• Title/Summary/Keyword: Reflection/Transmission Coefficients

검색결과 117건 처리시간 0.021초

연성된 쉘 구조물의 진동 파워흐름해석 (Vibration Power Flow Analysis of Coupled Shell Structures)

  • Kim, Il-Hwan;Hong, Suk-Yoon;Park, Do-Hyun;Kil, Hyun-Gwon
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문초록집
    • /
    • pp.352.2-352
    • /
    • 2002
  • In this paper, Power Flow Analysis (PFA) method has been applied to the prediction of vibration energy density and intensity of coupled shell structures in the medium-to-high frequency ranges. To consider the wave transformation at joint between shell elements, power transmission and reflection coefficients are investigated for various joint angles, and here Donnell-Mushtari thin shell theory has been used. (omitted)

  • PDF

사각형형상 불투과성 수증방파제에 의한 불규칙파의 변형 (Transformation of Irregular Waves due to Rectangular Submerged Non-porous Breakwaters)

  • 황종길;이승협;조용식
    • 한국수자원학회논문집
    • /
    • 제37권11호
    • /
    • pp.949-958
    • /
    • 2004
  • 본 연구에서는 사각형형상 수중방파제에 의한 불규칙파의 반사에 대하여 수리모형실험과 수치모형실험을 수행한 후 실험결과를 비교하였다. 수치해석 모형에서는 Reynolds 방정식을 지배방정식으로 사용하고 난류해석을 위해 k-$\varepsilon$모델을 적용하였으며, 자유수면변위를 추적하기 위해 VOF기법을 사용하였다. 수리모형실험과 수치모형실험의 결과는 서로 잘 일치하였으며, 수중방파제의 배열이 증가함에 따라 반사율은 증가하였다.

혼합경계적분 요소법을 사용한 직교입사파랑의 반사률계산 모델 (A Hybrid Boundary Integral Equation Model Applied for the Calculation of Normal Incident Waves)

  • 서승남;김상익
    • 한국해안해양공학회지
    • /
    • 제3권3호
    • /
    • pp.170-175
    • /
    • 1991
  • 지형에 의한 파랑의 반사율을 계산하기 위하여 혼합 경계적분 요소법(HBIEM)을 사용하였다. 선형요소를 사용한 수치모델의 결과를 기존의 결과와 비교하여 정확도를 검증한 후 입사 파랑의 조건에 따른 반사율과 투과율을 계산하였다. 계단식 지형에 대한 본 모델의 결과는 기존의 결과에 잘 부합되었으며 계단식 지형의 반사율은 수심이 깊어짐에 따라 단조 감소하나 일정한 수심위에 놓인 sinusoidal 둔덕의 반사율은 수심이 깊어짐에 따라 증가하여 최고점에 이른 후 다시 감소하는 형태를 보인다. 한편 두 재의 둔덕(hump)에 의한 반사율은 상호작용에 의해 그 형태가 현저하게 바뀌며 파랑조건에 따른 반사율이 도시되었다.

  • PDF

Effects of stiffness on reflection and transmission of micropolar thermoelastic waves at the interface between an elastic and micropolar generalized thermoelastic solid

  • Kumar, Rajneesh;Sharma, Nidhi;Ram, Paras
    • Structural Engineering and Mechanics
    • /
    • 제31권2호
    • /
    • pp.117-135
    • /
    • 2009
  • The reflection and transmission of micropolar thermoelastic plane waves at the interface between an elastic solid and micropolar generalized thermoelastic solid is discussed. The interface boundary conditions obtained contain interface stiffness (normal stiffness and transverse stiffness). The expressions for the reflection and transmission coefficients which are the ratios of the amplitudes of reflected and transmitted waves to the amplitude of incident waves are obtained for normal force stiffness, transverse force stiffness and welded contact. Numerical calculations have been performed for amplitude ratios of various reflected and transmitted waves. The variations of amplitude ratios with angle of incident wave have been depicted graphically. It is found that the amplitude ratios of reflected and transmitted waves are affected by the stiffness, micropolarity and thermal distribution of the media.

다층구조물내의 탄성파 전파해석 (An Analysis of Elastic Wave Propagation in Multilayered Media)

  • 김현실
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1999년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Spring
    • /
    • pp.143-150
    • /
    • 1999
  • Elastic wave propagation in a multilayered elastic half-plane is studied by using the Cagniard-de Hoop method. After the unknowns are expressed in terms of the reflection and transmission coefficients in the in terms of the reflection and transmission coefficients in the integral-transformed domains they are assmbled to form the global matrix equation. The inverse Laplace transform of each term is done by applying the Cagniard-de Hoop methods. As a numerical example a four-layered half-plane is considered where a point source is applied to the first layer. The method described in the present study can be used in checking other numerical methods such as FDM.

  • PDF

보/평판 점연성구조의 파동전달해석 (Wave Transmission Analysis of Beam/Plate Point-Coupled Structures)

  • 서성훈;홍석윤;길현권
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.457-467
    • /
    • 2004
  • Wave Transmission analysis is one of methods for power transmission and reflection coefficients in coupled infinite structures. This paper focuses the wave transmission analysis of point coupled structures among semi-infinite beams and infinite thin plates considering all kinds of waves. It is supposed that the junction through the beams and plates is an identical spot and no point of contact exist except the spot. The boundary conditions are applied at the spot for continuities of 6 DOF displacements and 6 DOF force equilibriums, and then wave fields are obtained in the coupled structures. Since wave components in plate field are simplified using asymptotic expressions of Henkel functions, the displacements and forces at the plate junction can be simply expressed with magnitudes of the wave components. The wave fields according to incident waves gives the power transmission coefficients in beam/plate point coupled structures. For both coupled structures with a beam vertically and obliquely joined to a plate, power transmission analysis is performed and the analysis results are compared and examined.

  • PDF

평판 구조물의 진동 파워흐름해석을 위한 비보존 조인트 개발 (Development of Compliant and Dissipative Joints in Coupled Thin Plates for Vibrational Energy Flow Analysis)

  • 송지훈;홍석윤
    • 한국소음진동공학회논문집
    • /
    • 제18권10호
    • /
    • pp.1082-1090
    • /
    • 2008
  • In this paper, a general solution for the vibrational energy and intensity distribution through a compliant and dissipative joint between plate structures is derived on the basis of energy flow analysis (EFA). The joints are modeled by four sets of springs and dashpots to show their compliancy and dissipation in all four degrees of freedom. First, for the EFA, the power transmission and reflection coefficients for the joint on coupled plate structures connected at arbitrary angles were derived by the wave transmission approach. In numerical applications, EFA is performed using the derived coefficients for coupled plate structures under various joint properties, excitation frequencies, coupling angles, and internal loss factors. Numerical results of the vibrational energy distribution showed that the developed compliant and dissipative joint model successfully predicted the joint characteristics of practical structures vibrating in the medium-to-high frequency ranges. Moreover, the intensity distribution of a compliant and dissipative joint is described.

복합정현파형 지형에서의 파랑 반사 (Wave Reflection over Doubly-Sinusoidally Varying Topographies)

  • 김영택;조용식;이정규
    • 한국해안해양공학회지
    • /
    • 제13권3호
    • /
    • pp.189-194
    • /
    • 2001
  • 본 연구에서는 경계요소법을 이용한 파랑의 통과와 반사에 대하여 다루었다. 특히 파랑이 복합졍현파형 지형을 통과하는 경우 그 때의 반사율과 일종의 공명현상인 Bragg 반사에 대하여 고찰하였다. 해석결과의 검증을 위하여 고유함수전개법에 의한 트렌치 지형에서의 통과율과 반사율 값과 비교하였으며, 복합정현파형 지형에 적용하여 기존의 수리실험, 고유함수전개법 및 확장형완경사방정식에 의한 결과와 비교하였다. 그 결과 기존의 연구결과와 비교적 잘 일치하고 있음을 확인할 수 있었다.

  • PDF

파워흐름해석을 위한 비보존 조인트로 연성된 평판 구조물의 파워투과반사계수 해석 (Wave Transmission Approach of Coupled Plate Structures through Non-conservative Joints for Power Flow Analysis)

  • Song, J-H;Hong, S-Y;Park, Y-H;Park, D-H;Kil, H-G
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문초록집
    • /
    • pp.353.2-353
    • /
    • 2002
  • The attenuation of waves transmitted through non-conservative joints that are shown in many practical structures, is affected by the impedance and the orientation of the joint. In this paper, the joints between plate structures are assumed to be modeled as linear spring-dashpot systems and the transmission and reflection of vibration energy in the medium to high frequency ranges are investigated. (omitted)

  • PDF

가동식 잠수 방파제의 유체동력학적 성능 수치해석 (Numerical Analysis of Hydrodynamic Performance of a Movable Submerged Breakwater)

  • 구원철;김도현
    • 대한조선학회논문집
    • /
    • 제48권1호
    • /
    • pp.23-32
    • /
    • 2011
  • Numerical analysis of hydrodynamic performance of a movable submerged breakwater was carried out as an eco-friendly marine structure for coastal and harbor protection. Using boundary elements method with two-dimensional frequency-domain reflection and transmission coefficients and wave forces acting on the submerged flat plate were calculated with various submerged depths and respective motion allowable modes. The movable breakwater was found to be more efficient in wave-blocking than the fixed structure. Variation of reflection coefficients was significantly influenced by vertical motion of the body.