• 제목/요약/키워드: Reflected Light Measurement

검색결과 99건 처리시간 0.026초

A Fiber Laser Spectrometer Demodulation of Fiber Bragg Grating Sensors for Measurement Linearity Enhancement

  • Kim, Hyunjin;Song, Minho
    • Journal of the Optical Society of Korea
    • /
    • 제17권4호
    • /
    • pp.312-316
    • /
    • 2013
  • A novel fiber-optic sensor system is suggested in which fiber Bragg grating sensors are demodulated by a wavelength-sweeping fiber laser source and a spectrometer. The spectrometer consists of a diffraction grating and a 512-pixel photo-diode array. The reflected Bragg wavelength information is transformed into spatial intensity distribution on the photo-diode array. The peak locations linearly correspond to the Bragg wavelengths, regardless of the nonlinearities in the wavelength tuning mechanism of the fiber laser. The high power density of the fiber laser enables obtaining high signal-to-noise ratio outputs. The improved demodulation characteristics were experimentally demonstrated with a fiber Bragg grating sensor array with 5 gratings. The sensor outputs were in much more linear fashion compared with the conventional tunable band-pass filter demodulation. Also it showed advantages in signal processing, due to the high level of photo-diode array signals, over the broadband light source system, especially in measurement of fast varying dynamic physical quantities.

자연광의 색온도 주기 재현을 위한 슬라이딩 윈도우 기반 이상치 판정 알고리즘 (Algorithm for Judging Anomalies Using Sliding Window to Reproduce the Color Temperature Cycle of Natural Light)

  • 전건우;오승택;임재현
    • 한국멀티미디어학회논문지
    • /
    • 제24권1호
    • /
    • pp.30-39
    • /
    • 2021
  • Research in the field of health lighting has continued to advance to reproduce the color temperature of natural light which periodically changes. However, most of this research could only reproduce a uniform circadian color temperature of natural light, therefore failing to realize the characteristics of the circadian cycle of color temperature difference by latitude and longitude. To reproduce the color temperature of natural light on which the characteristics of a region are reflected, the collection technology of real-time characteristics of natural light is needed. If the color temperatures which are not within a periodical pattern due to climate changes, etc., are measured, it will be difficult to judge the occurrence (presence) of the anomalies and to reproduce the circadian cycle of the color temperature of natural light. Therefore, this study proposes an algorithm for judging the anomalies in real time based on the sliding window to reproduce the color temperature of natural light. First, the natural light characteristics DB collected through the on-site measurement were analyzed, the differential values at a one-minute interval were calculated and examined, and then representative color temperature circadian patterns by solar terms were drawn. The anomalies were then detected by the application of the sliding window that calculated the deviation of the color temperature for the measured color temperature data set, which was collected through RGB sensors, while moving along the time sequence. In addition, the presence of anomalies was verified through the comparison study between the detection results and the representative circadian cycle of the color temperature by solar term. The judgment method for the anomalies from the measured color temperature of natural light was proposed for the first time, confirming that the proposed method was capable of detecting the anomalies with an average accuracy of 94.6%.

표면 요철 측정을 위한 광학적 거리 측정기 개발 (Development of an Optical Range Finder for Surface Roughness Measurements)

  • 엄정현;박현희;서동선;허웅;김준범;김용곤
    • 전기전자학회논문지
    • /
    • 제2권1호
    • /
    • pp.53-60
    • /
    • 1998
  • 고속도로 등의 대형 구조물의 표면 요철을 측정하기 위한 높은 반복율의 광학적 근 거리 측정기를 개발하였다. 삼각 측정법의 원리에 의한 거리 계측을 위해, 광원으로는 발광 다이오드를 사용하였으며 물체에서 반사된 광의 각도 검출기로는 1차원 위치 감응 광 검출기를 사용하였다. 개발된 거리 측정기는 물체의 반사율 변화를 극복하기 위한 자동 전력 조절 기능과 일정한 배경 광잡음은 물론 시간에 대해 변하는 배경 광잡음까지도 제거할 수 있는 전기적 배경잡음 제거기능을 갖고 있다. 거리 측정기의 장착 및 요철의 깊이를 고려하여 설정된 $22{\sim}38cm$의 측정거리에 대한 실험결과, 물체의 반사율에 관계없이 ${\pm}1.5mm$ 이내의 측정오차를 보였다.

  • PDF

자외선복사의 측정과 분석 (The Measurement and Analysis for Ultraviolet Radiation)

  • 한종성;김홍범;김훈
    • 조명전기설비학회논문지
    • /
    • 제19권2호
    • /
    • pp.7-12
    • /
    • 2005
  • 광원의 복사에너지가 물질에 입사하면, 그 물질의 고유한 특성에 따라 그 에너지의 일부는 흡수되고 나머지는 반사되거나 투과된다. 물질을 구성하는 분자가 빛을 흡수하면 그 빛의 파장에 따른 복사에너지에 의하여 열적 반응이나 광화학적 반응을 일으킨다. 특히 자외선복사에 의한 광화학적 작용은 물질의 변퇴색과 같은 광화학적 열화를 초래한다. 물질에 손상이 일어나면 그 물질의 가치상실 뿐 아니라, 손상된 것을 다시 복원하기 쉽지 않기 때문에 이에 대한 적절한 조명 환경을 마련하여 손상의 최소화나 보존에 많은 노력을 기울여야 한다. 본 연구에서는 자외선에 의한 광화학적 손상과 그 방호에 대하여 살펴보고, 전시조명용으로 많이 사용되는 인공광원과 자연주광을 대상으로, 이들 광원들이 방출하는 복사조도와 자외선을 포함하는 광복사량을 측정하고 그 결과를 분석하였다.

Research on Temperature Sensing Characteristics of Fiber Bragg Grating in Wide Temperature Range

  • Naikui Ren;Hongyang Li;Nan Huo;Shanlong Guo;Jinhong Li
    • Current Optics and Photonics
    • /
    • 제8권2호
    • /
    • pp.162-169
    • /
    • 2024
  • This study investigates the temperature sensitivities of fiber Bragg grating (FBG) across a broad temperature spectrum ranging from -196 ℃ to 900 ℃. We developed the FBG temperature measurement system using a high-temperature tubular furnace and liquid nitrogen to supply consistent high and low temperatures, respectively. Our research showed that the FBG temperature sensitivity changed from 1.55 to 10.61 pm/℃ in the range from -196 ℃ to 25 ℃ when the FBG was packaged with a quartz capillary. In the 25-900 ℃ range, the sensitivity varied from 11.26 to 16.62 pm/℃. Contrary to traditional knowledge, the FBG temperature sensitivity was not constant. This inconsistency primarily stems from the nonlinear shifts in the thermo-optic coefficient and thermal expansion coefficient across this temperature spectrum. The theoretically predicted and experimentally determined temperature sensitivities of FBGs encased in quartz capillary were remarkably consistent. The greatest discrepancy, observed at 25 ℃, was approximately 1.3 pm/℃. Furthermore, it was observed that at 900 ℃, the FBG was rapidly thermally erased, exhibiting variable reflected intensity over time. This study focuses on the advancement of precise temperature measurement techniques in environments that experience wide temperature fluctuations, and has considerable potential application value.

3 차원 거리 측정 장치 기반 이동로봇용 비선형 도로 인식 (3D Depth Measurement System-based Nonliniar Trail Recognition for Mobile Robots)

  • 김종만;김원섭;신동용
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.517-518
    • /
    • 2007
  • A method to recognize unpaved road region using a 3D depth measurement system is proposed for mobile robots. For autonomous maneuvering of mobile robots, recognition of obstacles or recognition of road region is the essential task. In this paper, the 3D depth measurement system which is composed of a rotating mirror, a line laser and mono-camera is employed to detect depth, where the laser light is reflected by the mirror and projected to the scene objects whose locations are to be determined. The obtained depth information is converted into an image. Such depth images of the road region represent even and plane while that of off-road region is irregular or textured. Therefore, the problem falls into a texture identification problem. Road region is detected employing a simple spatial differentiation technique to detect the plain textured area. Identification results of the diverse situation of Nonlinear trail are included in this paper.

  • PDF

광섬유 FBG 센서의 시간 분할 다중화를 위한 반사 신호의 분석 (Reflection Signal Analysis for Time Division Multiplexing of Fiber Optic FBG Sensors)

  • 김근진;권일범;윤동진;황두선;정영주
    • 비파괴검사학회지
    • /
    • 제30권1호
    • /
    • pp.6-12
    • /
    • 2010
  • 대형 구조물의 넓은 영역에 분포된 변형률이나 온도를 모니터링하기 위하여 광섬유 FBG(fiber Bragg grating:브래그 격자) 탐촉자를 사용하는 광섬유 FBG 센서가 사용된다. 본 논문에서는 광섬유 한개의 라인에 다수의 FBG 탐촉자를 사용하기 위하여 시간 분할 다중화와 파장 분할 다중화를 복합화한 다중화 기술을 제안한다. 일반적으로 광섬유 FBG 센서는 기본적으로 파장 분할 다중화 방식으로 작동되므로 본 연구에서는 시간 분할 다중화에 대한 특성을 고찰한다. 광섬유에 직렬로 연결된 FBG 탐촉자들의 반사도에 따른 반사광의 세기와 그 위치를 이론적으로 계산하고 실험결과와 비교한다. 이론적인 계산에 따르면 5개의 FBG 탐촉자의 반사도를 적절하게 선정함에 의하여 한개의 광섬유 라인에 설치하여 각각의 FBG 탐촉자에서 되돌아오는 반사광의 세기를 균일하게 얻을 수 있음을 확인한다. 이러한 결과를 실험으로 확인하기 위하여 반사도가 13%, 16%, 25%, 40%, 80%인 FBG 탐촉자를 제작하고, 시간 영역에서 각각의 FBG 탐촉자에서 되돌아오는 반사 신호를 관찰한다. 실험 결과는 신호잡음의 영향으로 이론적인 결과와 차이가 있지만, 복합 다중화 기법의 사용 가능성을 증명하는 5개의 FBG 탐촉자의 반사 신호를 모두 보인다.

광섬유 격자 센서와 회전 광학 커플러를 사용한 회전하는 블레이드 여러 지점에서의 온라인 변형률 측정 (Online Strain Measurement at Multiple Points on a Rotating Blade with Fiber Bragg Grating Sensors and a Rotary Optical Coupler)

  • 이종민;황요하
    • 대한기계학회논문집A
    • /
    • 제32권1호
    • /
    • pp.77-82
    • /
    • 2008
  • Strain-gauges have been dominantly used to measure strain at various points on a rotor, however, either a slip ring or telemetry has to be used to send sensor signals to data acquisition instruments at stationary side. Both slip ring and telemetry have numerous inherent problems which force severe limitations in real applications. This paper introduces a new rotor condition monitoring system using FBG(Fiber Bragg Grating) sensors and a rotary optical coupler. A single optical fiber with many FBG sensors is installed on the rotor and an optical dynamic interrogator is installed at stationary side. The sensor signal connection between rotating part and stationary part is made by the rotary optical coupling method which makes use of light's unique characteristic-light travels through space. Broad band light source from the interrogator travels to the optical fiber on the rotor and reflected FBG sensor signals travel back to the optical fiber on stationary side and are connected to the interrogator. Rotary optical coupler's insertion loss change due to rotation is compensated by using a reference sensor installed at the center of the rotor. The proposed system's performance has been successfully demonstrated by accurately measuring strains at 5 points on a blade rotating at high speed.

수신신호세기의 편차 보정법을 이용한 무선센서노드 간의 거리 추정 (Ranging the Distance Between Wireless Sensor Nodes Using the Deviation Correction Method of Received Signal Strength)

  • 이진영;김중규
    • 대한임베디드공학회논문지
    • /
    • 제7권2호
    • /
    • pp.71-78
    • /
    • 2012
  • Based on the Zigbee-based wireless sensor network, I suggest the way to reduce errors between the short distance, improving the accuracy of the presumed distance by revising the deviation of RSSI(Received Signal Strength Indication) values is to estimate the distance using only the RF signal power without the additional hardware. In general, the graph measured by RSSI values shows the proximity values which are ideally reduced in proportion to the distance under the free outdoor space in which LOS(Line-Of-Sight) is guaranteed. However, if the result of the received RSSI values are each substituted to the formula, it can produce a larger margin of error and less accurate measurement since it is based upon the premise that this free space is not affected by reflected waves or obstacles caused by the ground and electronic jamming engendered by the environment. Therefore, the purpose of this study is to reduce the margin of errors between the distances and to measure the proximity values with the ideal type of graph by suggesting the way to revise the received RSSI values in the light of these reflected waves or obstacles and the electronic jamming. In conclusion, this study proves that errors are reduced by comparing the proposed deviation correction method to the revised RSSI value.

광섬유 Sagnac 간섭계를 이용한 초음파의 비접촉식 감지 (Non-contact Detection of Ultrasonic Waves Using Fiber Optic Sagnac Interferometer)

  • 이정주;장태성;이승석;김영길;권일범;이왕주
    • 대한기계학회논문집A
    • /
    • 제25권9호
    • /
    • pp.1400-1409
    • /
    • 2001
  • This paper describes a fiber optic sensor suitable for non-contact detection of ultrasonic waves. This sensor is based on a fiber optic Sagnac interferometer. Quadrature phase bias between two interfering laser beams in Sagnac loop is introduced by a polarization controller. A stable quadrature phase bias can be confirmed by observing the interferometer output versus phase bias. This method eliminates a digital signal processing for detection of ultrasonic waves using Sagnac interferometer. Interference intensity is affected by the frequency of ultrasonic waves and the time delay of Sagnac loop. Collimator is attached to the end of the probing fiber to focus the light beam onto the specimen surface and to collect the reflected light back into the fiber probe. Ultrasonic waves produced by conventional ultrasonic transducers are detected. This fiber optic sensor based on Sagnac interferometer is very effective for detection of small displacement with high frequency such as ultrasonic waves used in conventional non-destructive testing.