• Title/Summary/Keyword: Reflectance performance

Search Result 194, Processing Time 0.028 seconds

A Melon Fruit Grading Machine Using a Miniature VIS/NIR Spectrometer: 2. Design Factors for Optimal Interactance Measurement Setup

  • Suh, Sang-Ryong;Lee, Kyeong-Hwan;Yu, Seung-Hwa;Shin, Hwa-Sun;Yoo, Soo-Nam;Choi, Yong-Soo
    • Journal of Biosystems Engineering
    • /
    • v.37 no.3
    • /
    • pp.177-183
    • /
    • 2012
  • Purpose: In near infrared spectroscopy, interactance configuration of a light source and a spectrometer probe can provide more information regarding fruit internal attributes, compared to reflectance and transmittance configuration. However, there is no through study on the parameters of interactance measurement setup. The objective of this study was to investigate the effect of the parameters on the estimation of soluble solids content (SSC) and firmness of muskmelons. Methods: Melon samples were taken from greenhouses at three different harvesting seasons. The prediction models were developed at three distances of 2, 5, and 8 cm between the light source and the spectrometer probe, three measurement points of 2, 3, and 6 evenly distributed on each sample, and different number of fruit samples for calibration models. The performance of the models was compared. Results: In the test at the three distances, the best results were found at a 5 cm distance. The coefficient of determination ($R_{cv}{^2}$) values of the cross-validation were 0.717 (standard error of prediction, SEP=$1.16^{\circ}Brix$) and 0.504 (SEP=4.31 N) for the estimation of SSC and firmness, respectively. The minimum measurement point required to fully represent the spectral characteristics of each fruit sample was 3. The highest $R_{cv}{^2}$ values were 0.736 (SEP=$0.87^{\circ}Brix$) and 0.644 (SEP=4.16 N) for the estimation of SSC and firmness, respectively. The performance of the models began to be saturated when 60 fruit samples were used for developing calibration models. The highest $R_{cv}{^2}$ of 0.713 (SEP=$0.88^{\circ}Brix$) and 0.750 (SEP=3.30 N) for the estimation of SSC and firmness, respectively, were achieved. Conclusions: The performance of the prediction models was quite different according to the condition of interactance measurement setup. In designing a fruit grading machine with interactance configuration, the parameters for interactance measurement setup should be chosen carefully.

Effects of Demolding Temperature on Formability and Optical Properties of Anti-reflective Nanostructure (반사방지 나노구조의 성형성과 광학적 특성에 대한 이형 온도의 영향)

  • Yeo, N.E.;Shim, Y.B.;Cho, S.U.;Kim, D.I.;Kim, K.N.;Jang, K.S.;Jeong, M.Y.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.2
    • /
    • pp.91-96
    • /
    • 2016
  • In this study, effects of demolding temperature (DT) on the formability and optical properties were evaluated in order to optimize thermal nanoimprint lithography for anti-reflective film. Characterization on optical property showed that optical performance was gradually enhanced as the DT increased up to $70^{\circ}C$ while the transmittance and the reflectance was degraded as the DT increased further to $100^{\circ}C$. In addition, similar behavior was observed from formability analysis. It was contributed to the formation of free volume and viscose flow. Therefore, it was concluded that the formability and optical property are highly influenced by the formation of free volume and viscous flow of polymer depending on the DT.

The Fabrication of Porous Nickel Oxide Thin Film using Anodization Process for an Electrochromic Device

  • Lee, Won-Chang;Choe, Eun-Chang;Hong, Byeong-Yu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.407.1-407.1
    • /
    • 2016
  • Electrochromism is defined as a phenomenon which involves persistently repeated change of optical properties between bleached state and colored state by simultaneous injection of electrons and ions, sufficient to induce an electrochemical redox process. Due to this feature, considerable progress has been made in the synthesis of electrochromic (EC) materials, improvements of EC properties in EC devices such as light shutter, smart window and variable reflectance mirrors etc. Among the variable EC materials, solid-state inorganics in particular, metal oxide semiconducting materials such as nickel oxide (NiO) have been investigated extensively. The NiO that is an anodic EC material is of special interest because of high color contrast ratio, large dynamic range and low material cost. The high performance EC devices should present the use of standard industrial production techniques to produce films with high coloration efficiency, rapid switching speed and robust reversibility. Generally, the color contrast and the optical switching speed increase drastically if high surface area is used. The structure of porous thin film provides a specific surface area and can facilitate a very short response time of the reaction between the surface and ions. The large variety of methods has been used to prepare the porous NiO thin films such as sol-gel process, chemical bath deposition and sputtering. Few studies have been reported on NiO thin films made by using sol-gel method. However, compared with dry process, wet processes that have the questions of the durability and the vestige of bleached state color limit the thin films practical use, especially when prepared by sol-gel method. In this study, we synthesis the porous NiO thin films on the fluorine doped tin oxide (FTO) glass by using sputtering and anodizing method. Also we compared electrical and optical properties of NiO thin films prepared by sol gel. The porous structure is promised to be helpful to the properties enhancement of the EC devices.

  • PDF

Color Image Compensation Method using Advanced Image Formation Model and Adaptive Filter (개선된 영상생성 모델과 적응적 필터를 이용한 칼라 영상 보정방법)

  • Choi, Ho-Hyung;Yun, Byoung-Ju
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.12
    • /
    • pp.10-18
    • /
    • 2009
  • Color rendition method is necessary for improving the low contrast images which are achieved by PDA, mobile phone camera or PC camera. There are some methods for color rendition. However, after correcting the color, image quality degradations, such as graying-out, halo-artifact and color noise, may occur. In order to overcome these problems, this paper proposes a retinex-based color rendition method. The proposed method uses the HSV color coordinate system to avoid the graying-out, and the advanced image formation model to reduce the halo-artifact in which the image is divided into three components as the global illumination, the local illumination, and reflectance. The experiment results show that the proposed method yields better performance of color correction over the conveniently method.

Relationship between Near Infrared Reflectance Spectra and Mechanical Sensory Score of Commercial Brand Rice Produced in Jeonbuk (전북산 브랜드 쌀의 근적외선 분광스펙트럼과 기계적 식미치간의 상호관계)

  • Song, Young-Ju;Song, Young-Eun;Oh, Nam-Ki;Choi, Yeong-Geun;Cho, Kyu-Cha
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.spc1
    • /
    • pp.42-46
    • /
    • 2006
  • The purpose of this study was to assess whether mechanical sensory score by Toyo Midometer can be substituted by near-infrared spectroscopy (NIRS) method in whole-grain milled rice samples. Toyo values of collected commercial brand rice (n=127) had comparatively wide ranges from 62.9 to 84.2 (Mean=70.5; S.D.=4.0). Calibration equation was developed using 73 samples. Standard error of calibration (SEC) for sensory score equation and $R^2$ were 0.95, and 0.94, respectively, however, percentage of variation in the reference method values (1-VR) which give a true indication of equation performance was slightly lower (1-VR=0.81) than calibration equation. It was demonstrated that, even though NIRS has potential as a rapid tools to predict rice sensory score, the prediction of sensory score in rice by NIRS needs to be further investigation on a large number of sample with different varieties and growing locations.

MATURE INSTRUMENT, IMMATURE TECHNOLOGY : IS NIR ANALYSIS OF HIGH MOISTURE MATERIALS A SERIOUS PROPOSITION\ulcorner

  • Berding, Nils
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.3124-3124
    • /
    • 2001
  • The development and evolution of near infra-red spectroscopic (NIS) calibrations for high-moisture materials is an expensive proposition. Such investment is suspect unless the instrument, or instruments, on which calibrations were developed can be preserved intact or re-standardized as component replacements occurs. The objective of this paper is to detail the changes in performance of a six-year old instrument after maintenance in years five and six resulted in collection of spectral data that was increasingly removed from the calibration population. Calibrations for the analysis of mature sugarcane stalks, a high-moisture material, were developed successfully in 1995 using a broad sample population in terms of genetics, and spectral and temporal variation. The spectral library was further broadened in 1996. In 1997, 1999, 1999, and 2000, additional samples constituting 10% of the laboratories throughput were subjected to full component analyses using routine laboratory techniques. These samples were primarily random samples, but were complemented with samples that were significant for the spectral H statistic or for the component t statistic. In 1998, an additional calibration was developed for populations consisting of samples of either mature stalks (culms) or sucker culms. Substantial additional samples numbers were collected for this calibration in 1999 and 2000. Attempts to standardize the scanning spectrophotometer used for these calibrations with a second similar instrument in 1999 failed because the instruments were optically different, and standardization could not account for this. Maintenance adjustments were made to the remote reflectance probe of the original instrument in 1999, and replacement of its PbS detectors was done in 2000. Spectral data collected in 1999 and 2000 yielded spectral populations that were increasingly removed from the respective spectral populations on which the calibrations were developed. The mature stalk calibrations benefited marginally from evolutionary calib.

  • PDF

Development of a Portable Quality Evaluation System for Bee-honeys by Using Near Infrared Spectroscopy (근적외 분광법을 응용한 휴대용 벌꿀 품질 평가 장치 개발)

  • Choi, Chang-Hyun;Kim, Jong-Hun;Kwon, Ki-Hyun;Kim, Yong-Joo
    • Food Science and Preservation
    • /
    • v.18 no.2
    • /
    • pp.156-164
    • /
    • 2011
  • This study was conducted to develop a portable quality evaluation system of bee-honey by near infrared spectroscopic technique. Two kinds of bee-honeys from acacia and polyflower sources were tested in this study. The system consists of power supply, tungsten-halogen lamp, detector, and optical fiber probe. Performance of the system was analyzed by comparing the prediction accuracy of the laboratory spectrophotometer. Total of 346 spectra was divided into a calibration set and a prediction set. The PLS (Partial Least Squares) models were developed to predict the quality parameters of bee-honeys. Reflectance spectra, moisture contents, ash, invert sugar, sucrose, F/G ratio, HMF(hydroxy methyl furfural), and $C^{12}/C^{13}$ ratio of honeys were measured. The PLS models of the laboratory spectrophotometer showed good relationships between predicted and measured quality parameters of honeys in the wavelength range of 1.100~2.200 nm. The PLS analysis of the portable quality evaluation system showed good relationships between predicted and measured quality parameters of honeys in the wavelength range of 1.100~1.300 nm and 1.400~1.700 nm. The results showed the feasibility of the portable quality evaluation system to determine the quality parameters of bee-honey in the field during harvesting.

Effect of a SiO2 Anti-reflection Layer on the Optoelectronic Properties of Germanium Metal-semiconductor-metal Photodetectors

  • Zumuukhorol, Munkhsaikhan;Khurelbaatar, Zagarzusem;Kim, Jong-Hee;Shim, Kyu-Hwan;Lee, Sung-Nam;Leem, See-Jong;Choi, Chel-Jong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.4
    • /
    • pp.483-491
    • /
    • 2017
  • The interdigitated germanium (Ge) meta-lsemiconductor-metal (MSM) photodetectors (PDs) with and without an $SiO_2$ anti-reflection (AR) layer was fabricated, and the effect of $SiO_2$ AR layer on their optoelectronic response properties were investigated in detail. The lowest reflectance of 15.6% at the wavelength of 1550 nm was obtained with a $SiO_2$ AR layer with a thickness of 260 nm, which was in a good agreement with theoretically calculated film thickness for minimizing the reflection of Ge surface. The Ge MSM PD with 260 nm-thick $SiO_2$ AR layer exhibited enhanced device performance with the maximum values of responsivity of 0.65 A/W, the quantum efficiency of 52.2%, and the detectivity of $2.49{\times}10^9cm\;Hz^{0.5}W^{-1}$ under the light illumination with a wavelength of 1550 nm. Moreover, time-dependent switching analysis of Ge MSM PD with 260 nm- thick $SiO_2$ AR layer showed highest on/off ratio with excellent stability and reproducibility. All this investigation implies that 260 nm-thick $SiO_2$ AR layer, which is effective in the reduction in the reflection of Ge surface, has a great potential for Ge based optoelectronic devices.

Purification of BTEX at Indoor Air Levels Using Carbon and Nitrogen Co-Doped Titania under Different Conditions

  • Jo, Wan-Kuen;Kang, Hyun-Jung
    • Journal of Environmental Science International
    • /
    • v.21 no.11
    • /
    • pp.1321-1331
    • /
    • 2012
  • To date, carbon and nitrogen co-doped photocatalysts (CN-$TiO_2$) for environmental application focused mainly on the aqueous phase to investigate the decomposition of water pollutants. Accordingly, the present study explored the photocatalytic performance of CN-$TiO_2$ photocatalysts for the purification of indoor-level gas-phase aromatic species under different operational conditions. The characteristics of prepared photocatalysts were investigated using X-ray diffraction, scanning emission microscope, diffuse reflectance UV-VIS-NIR analysis, and Fourier transform infrared (FTIR) analysis. In most cases, the decomposition efficiency for the target compounds exhibited a decreasing trend as input concentration (IC) increased. Specifically, the average decomposition efficiencies for benzene, toluene, ethyl benzene, and xylene (BTEX) over a 3-h process decreased from 29% to close to zero, 80 to 5%, 95 to 19%, and 99 to 32%, respectively, as the IC increased from 0.1 to 2.0 ppm. The decomposition efficiencies obtained from the CN-$TiO_2$ photocatalytic system were higher than those of the $TiO_2$ system. As relative humidity (RH) increased from 20 to 95%, the decomposition efficiencies for BTEX decreased from 39 to 5%, 97 to 59%, 100 to 87%, and 100 to 92%, respectively. In addition, as the stream flow rates (SFRs) decreased from 3.0 to 1.0 L $min^{-1}$, the average efficiencies for BTEX increased from 0 to 58%, 63 to 100%, 69 to 100%, and 68 to 100%, respectively. Taken together, these findings suggest that three (IC, RH, and SFR) should be considered for better BTEX decomposition efficiencies when applying CN-$TiO_2$ photocatalytic technology to purification of indoor air BTEX.

Autofocus of Infinity-Corrected Optical Microscopes by Confocal Principle and Fiber Source Modulation Technique (공초점 원리와 광섬유 광원 변조를 이용한 무한보정 현미경 자동초점)

  • Park, Jung-Jae;Kim, Seung-Woo;Lee, Ho-Jae
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.6
    • /
    • pp.583-590
    • /
    • 2004
  • The autofocus is one of the important processes in the automated vision inspection or measurements using optical microscopes, because it influences the measuring accuracy. In this paper, we used the confocal microscope configuration based on not a pinhole but a single-mode optical fiber. A single mode fiber has the functions of source and detector by applying the reciprocal scheme. As a result, we acquired a simple system configuration and easy alignment of the optical axis. Also, we embodied a fast autofocus system by acquiring the focus error signal through a source modulation technique. The source modulation technique can effectively reduce physical disturbances compared with objective lens modulation, and it is easily applicable to general optical microscopes. The focus error signal was measured with respect to the modulation amplitude, reflectance of the specimen and inclination angle of the measuring surface. The performance of the proposed autofocus system was verified through autofocusing flat mirror surface. In addition, we confirmed that source modulation rarely degrades the depth resolution by the comparison between the FWHMs of axial response curves.