DOI QR코드

DOI QR Code

Effect of a SiO2 Anti-reflection Layer on the Optoelectronic Properties of Germanium Metal-semiconductor-metal Photodetectors

  • Zumuukhorol, Munkhsaikhan (School of Semiconductor and Chemical Engineering, Semiconductor Physics Research Center, Chonbuk National University) ;
  • Khurelbaatar, Zagarzusem (School of Semiconductor and Chemical Engineering, Semiconductor Physics Research Center, Chonbuk National University) ;
  • Kim, Jong-Hee (School of Semiconductor and Chemical Engineering, Semiconductor Physics Research Center, Chonbuk National University) ;
  • Shim, Kyu-Hwan (School of Semiconductor and Chemical Engineering, Semiconductor Physics Research Center, Chonbuk National University) ;
  • Lee, Sung-Nam (Department of Nano-Optical Engineering, Korea Polytechnic University) ;
  • Leem, See-Jong (Department of Energy and Electrical Engineering, Korea Polytechnic University) ;
  • Choi, Chel-Jong (School of Semiconductor and Chemical Engineering, Semiconductor Physics Research Center, Chonbuk National University)
  • Received : 2016.05.02
  • Accepted : 2017.06.29
  • Published : 2017.08.30

Abstract

The interdigitated germanium (Ge) meta-lsemiconductor-metal (MSM) photodetectors (PDs) with and without an $SiO_2$ anti-reflection (AR) layer was fabricated, and the effect of $SiO_2$ AR layer on their optoelectronic response properties were investigated in detail. The lowest reflectance of 15.6% at the wavelength of 1550 nm was obtained with a $SiO_2$ AR layer with a thickness of 260 nm, which was in a good agreement with theoretically calculated film thickness for minimizing the reflection of Ge surface. The Ge MSM PD with 260 nm-thick $SiO_2$ AR layer exhibited enhanced device performance with the maximum values of responsivity of 0.65 A/W, the quantum efficiency of 52.2%, and the detectivity of $2.49{\times}10^9cm\;Hz^{0.5}W^{-1}$ under the light illumination with a wavelength of 1550 nm. Moreover, time-dependent switching analysis of Ge MSM PD with 260 nm- thick $SiO_2$ AR layer showed highest on/off ratio with excellent stability and reproducibility. All this investigation implies that 260 nm-thick $SiO_2$ AR layer, which is effective in the reduction in the reflection of Ge surface, has a great potential for Ge based optoelectronic devices.

Keywords

References

  1. A. Rogalski, "Infrared detectors: an overview," Infrared Phys. Technol, Vol.43, pp.187-210, June., 2002. https://doi.org/10.1016/S1350-4495(02)00140-8
  2. K. D. Stock and R. Heine, "Spectral characterization of Ge trap detectors and photodiodes used as transfer standards," Metrologia, Vol.40, pp.163-166, Feb., 2003. https://doi.org/10.1088/0026-1394/40/1/337
  3. M. Lopez, H. Hofer, K. D. Stock, J. C. Bermudez, A. Schirmacher, F. Schneck and S. Kuck, "Spectral reflectance and responsivity of Ge and InGaAs photodiodes in the near-infrared: measurement model," Appl. Opt, Vol.46, No.29, pp.7337-7344, Oct., 2007. https://doi.org/10.1364/AO.46.007337
  4. C. O. Chui, S. Ramanathan, B. B. Triplett, P. C. McIntyre and K. C. Saraswat, "Germanium MOS capacitors incorporating ultrathin high-${\kappa}$ gate dielectric," IEEE Electron Device Lett, Vol.23, No.8, pp.473-475, Aug., 2002. https://doi.org/10.1109/LED.2002.801319
  5. J. Wang and S. Lee, "Ge-photodetectors for Si-based optoelectronic integration," Sensors, Vol.11, pp.696-718, Jan., 2011. https://doi.org/10.3390/s110100696
  6. Z. Khurelbaatar, Y. H. Kil, H. K. Lee, J. H. Yang, S. Kang, T. S. Kim and K. H. Shim, "A comparative study of IR Ge photodiodes with a Schottky barrier contact and metal-semiconductor-metal structure," J. Korean Phys. Soc, Vol.65, No.12, pp.2100-2106, Dec., 2014. https://doi.org/10.3938/jkps.65.2100
  7. L. Colace, G. Masini, F. Galluzzi and G. Assanto, "Metal-semiconductor-metal near-infrared light detector based on epitaxial Ge/Si," Appl. Phys. Lett, Vol.72, No.24, pp.3175-3177, June., 1998. https://doi.org/10.1063/1.121584
  8. J. Oh, S. K Banerjee and J. C. Campbell, "Metal-germanium-metal photodetectors on heteroepitaxial Ge-on-Si with amorphous Ge Schottky barrier enhancement layers," IEEE Photon. Technol. Lett, Vol.16, No.2, pp.581-583, Feb., 2004. https://doi.org/10.1109/LPT.2003.822258
  9. T. Asar and S. Ozcelik, "Barrier enhancement of Ge MSM IR photodetector with Ge layer optimization," Superlattices Microstruct, Vol.88, pp.685-694, Dec., 2015. https://doi.org/10.1016/j.spmi.2015.10.034
  10. D. Wang, T. Maekura, S. Kamezawa, K. Yamamoto and H. Nakashima, "Direct band gap electroluminescence from bulk germanium at room temperature using an asymmetric fin type metal/germanium/metal structure," Appl. Phys. Lett, Vol.106, pp.071102-1-071102-4, Feb., 2015. https://doi.org/10.1063/1.4913261
  11. J. T. Cox and G. Hass, "Antireflection coatings for germanium and silicon in the infrared," J. Opt. Soc. Am, Vol.48. No.10, pp.677-680, Oct., 1958. https://doi.org/10.1364/JOSA.48.000677
  12. K. D. Stock, "Ge photodiodes as transfer standards for radiant power measurements in the field of fibre optics," Measurement, Vol.8, No.1, pp.31-34, Mar., 1990. https://doi.org/10.1016/0263-2241(90)90074-G
  13. K. Lark-Horovitz and K. W. Maissner, "The optical properties of semiconductors. I. The reflectivity of germanium semiconductors," Phys. Rev, Vol.76, pp.1530-1530, Oct., 1949.
  14. R. Homier, A. Jaouad, A. Turala, C. E. Valdivia, D. Masson, S. G. Wallace, S. Fafard, R. Ares and V. Aimez, "Antireflection coating design for triple-junction III-V/Ge high-efficiency solar cells using low absorption PECVD silicon nitride," IEEE J. Photovolt, Vol.2, No.3, pp.393-397, July., 2012. https://doi.org/10.1109/JPHOTOV.2012.2198793
  15. E. Brinley, S. Seal, R. Folks, E. Braunstein, L. Kramer and S. Seal, "High efficiency $SiO_2$ - $TiO_2$ hybrid sol-gel antireflective coating for infrared applications," J. Vac. Sci. Technol A, Vol.24, pp.1141-1146, June., 2006. https://doi.org/10.1116/1.2210007
  16. P. H. Ho, W. C. Lee, Y. T. Liou, Y. P. Chiu, Y. S. Shih, C. C. Chen, P. Y. Su, M. K. Li, H. L. Chen, C. T. Liang and C. W. Chen, "Sunlight-activated graphene-heterostructure transparent cathodes: enabling high-performance n-graphene/p-Si Schottky junction photovoltaics," Energy Environ. Sci, Vol.8, pp.2085-2092, May., 2015. https://doi.org/10.1039/C5EE00548E
  17. D. Li, F. Huang and S. Ding, "Sol-gel preparation and characterization of nanoporous ZnO/$SiO_2$ coatings with broadband antireflection properties," Appl. Surf. Sci, Vol.257, pp.9752-9756, June., 2011. https://doi.org/10.1016/j.apsusc.2011.05.126
  18. K. Ali, S. A. Khan and M. Z. M. Jafri, "Effect of double layer ($SiO_2/TiO_2$) anti-reflective coating on silicon solar cell," Int. J. Electrochem. Sci, Vol.9, pp.7865-7874, Oct., 2014.
  19. C. Wang, C. Li, J. Wei, G. Lin, X. Lan, X. Chi, C. Lu, Z. Huang, C. Chen, W. Huang, H. Lai and S. Chen, "High-performance Ge p-n photodiode achieved with preannealing and excimer laser annealing," IEEE Photon. Technol. Lett, Vol.27, No.14, pp.1485-1488, July., 2015. https://doi.org/10.1109/LPT.2015.2426016
  20. H. Y. Yu, D. Kim, S. Ren, M. Kobayashi, D. A. B. Miller, Y. Nishi and K. C. Saraswat, "Effect of uniaxial-strain on Ge p-i-n photodiodes integrated on Si," Appl. Phys. Lett, Vol.95, pp.161106-1-1161106-3, Oct., 2009. https://doi.org/10.1063/1.3254181
  21. D. K. Reinhard, D. T. Tran, T. Schuelke, M.F. Becker, T.A. Grotjohn and J. Asmussen, "$SiO_2$ antireflection layers for single-crystal diamond," Diam Relat Mater, Vol.25, pp.84-86, Feb., 2012. https://doi.org/10.1016/j.diamond.2012.02.011
  22. M. Li and W. A. Anderson, "Si based metal-semiconductor-metal photodetectors with various design modifications," Solid State Electron, Vol.51, pp.94-101, Jan., 2007. https://doi.org/10.1016/j.sse.2006.11.006
  23. J. B. D. Soole and H. Schumacher, "InGaAs metal-semiconductor-metal photodetectors for long wavelength optical communications," IEEE J. Quantum Electron, Vol.27, No.3, pp.737-752, Mar., 1991. https://doi.org/10.1109/3.81384
  24. J. C. Cervantes-Gonzalez, D. Ahn, X. Zheng, S. K. Banerjee, A. T. Jacome, J. C. Campbell and I. E. Zaldivar-Huerta, "Germanium metal-semiconductor-metal photodetectors evanescently coupled with upper-level silicon oxynitride dielectric waveguides," Appl. Phys. Lett, Vol.101, pp.261109-1-261109-3, Dec., 2012. https://doi.org/10.1063/1.4773212
  25. L. H. Zeng, M. Z. Wang, H. Hu, B. Nie, Y. Q. Yu, C. Y. Wu, L. Wang, J. G. Hu, C. Xie, F. X. Liang and L. B. Luo, "Monolayer graphene/germanium Schottky junction as high-performance self-driven infrared light photodetector," ACS Appl. Mater. Interfaces, Vol.5, pp.9362-9366, Sept., 2013. https://doi.org/10.1021/am4026505
  26. C. H. Lin and C. W. Liu, "Metal-insulator-semiconductor photodetectors," Sensors, Vol.10, pp.8797-8826, Sept., 2010. https://doi.org/10.3390/s101008797
  27. Y. Ishikawa, K. Wada, D. D. Cannon, J. Liu, H. C. Luan and L. C. Kimerling, "Strain-induced band gap shrinkage in Ge grown on Si substrate," Appl. Phys. Lett, Vol.81, No.13, pp.2044-2046, Mar., 2003.
  28. S. S. Naika and V. R. Reddy, "Analysis of current-voltage-temperature (I-V-T) and capacitance-voltage-temperature (C-V-T) characteristics of Ni-Au Schottky contacts on n-type InP," Superlattices Microstruct, Vol.40, pp.330-342, July., 2010.