• Title/Summary/Keyword: Reference coordinate

Search Result 288, Processing Time 0.03 seconds

Analysis of the Combined Positioning Accuracy using GPS and GLONASS Navigation Satellites

  • Choi, Byung-Kyu;Roh, Kyoung-Min;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.2 no.2
    • /
    • pp.131-137
    • /
    • 2013
  • In this study, positioning results that combined the code observation information of GPS and GLONASS navigation satellites were analyzed. Especially, the distribution of GLONASS satellites observed in Korea and the combined GPS/GLONASS positioning results were presented. The GNSS data received at two reference stations (GRAS in Europe and KOHG in Goheung, Korea) during a day were processed, and the mean value and root mean square (RMS) value of the position error were calculated. The analysis results indicated that the combined GPS/GLONASS positioning did not show significantly improved performance compared to the GPS-only positioning. This could be due to the inter-system hardware bias for GPS/GLONASS receivers, the selection of transformation parameters between reference coordinate systems, the selection of a confidence level for error analysis, or the number of visible satellites at a specific time.

Improved DC Offset Error Compensation Algorithm in Phase Locked Loop System

  • Park, Chang-Seok;Jung, Tae-Uk
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1707-1713
    • /
    • 2016
  • This paper proposes a dc error compensation algorithm using dq-synchronous coordinate transform digital phase-locked-loop in single-phase grid-connected converters. The dc errors are caused by analog to digital conversion and grid voltage during measurement. If the dc offset error is included in the phase-locked-loop system, it can cause distortion in the grid angle estimation with phase-locked-loop. Accordingly, recent study has dealt with the integral technique using the synchronous reference frame phase-locked-loop method. However, dynamic response is slow because it requires to monitor one period of grid voltage. In this paper, the dc offset error compensation algorithm of the improved response characteristic is proposed by using the synchronous reference frame phase-locked-loop. The simulation and the experimental results are presented to demonstrate the effectiveness of the proposed dc offset error compensation algorithm.

Flexible Source Current Reference Generation for Predictive Current Control of Matrix Converter under Unbalanced Input Voltages

  • Nguyen, Thanh-Luan;Lee, Hong-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.359-360
    • /
    • 2016
  • This paper presents a new predictive current control (PCC) method to achieve the coordinate control of power and current of the matrix converter under unbalanced input voltages. In order to control the power fluctuation in the input side, the flexible source current reference is generated based on the positive-negative sequence components of the input voltage. The optimal switching state to adjust source and load currents is selected by minimization the cost function which is obtained from the sum of the absolute errors between the current references and their predictive values. Simulation results are given to validate the effectiveness of the proposed PCC method.

  • PDF

Modeling and Path-tracking of FourWheeled Mobile Robot with 2 D.O.F having the Limited Drive-Torques (제한된 구동 토크를 갖는 4륜 2 자유도 구류 로보트의 모델링과 경로추적)

  • 문종우;박종국
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.4
    • /
    • pp.1-10
    • /
    • 1996
  • In this paper are presented kinematic and dynamic modeling and path-tracking of fourwhelled mobile robot with 2 d.o.f. having the limited drivetorques. Controllability of wheeled-mobile robot is revealed by using the kinematic model. Instantaneously coincident coordinate cystem, force/torques generated by inverse dynamics exceed the limitation, we make wheeled-mobile robot follow the reference path by modifying the planned reference trajectory with time-scaling. The controller is introduced to compensate for error owing to modeling uncertainty and measurement noise. And simulation results prove that method proposed by this paper is efficient.

  • PDF

Development of Smart pH Reader Based on Android Smart Phone (안드로이드 스마트폰 기반 Smart pH Reader 개발)

  • Kim, Min J.;Chang, Byoung-Yong;Joo, Moon G.
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.8 no.4
    • /
    • pp.227-233
    • /
    • 2013
  • In this paper, we propose an implementation of pH reader on Android smart phone by using Eclipse and SDK. After taking a picture of pH spectrum and tested litmus paper at the same time, we save the picture. From the picture, reference values in RGB and YUB of all pH color in the spectrum are obtained and then those of a chosen point by user in the litmus paper are to be compared with. The distances between the reference colors and the litmus paper's color are measured by Euclidean distance in RGB or YUB coordinate. The nearest two pH values are taken to find the weighted average of the result. Series of test show the proposed scheme is feasible and has performance within 10% error.

Nonlinear control of unicycle-type mobile robot (Unicycle-type 이동로봇의 비선형 제어)

  • 김용진;문인혁
    • Proceedings of the IEEK Conference
    • /
    • 2001.06e
    • /
    • pp.131-134
    • /
    • 2001
  • This paper proposes a stable control rule for nonlinear unicycle-type mobile robot. The control method uses a local error coordinate system, velocity and distance constants $\kappa$$\_$x/, $\kappa$$\_$y/, and he. Stability of control rule is proved Liapunov function. System input to the mobile robot is reference posture ($\chi$$\_$r/, y$\_$r/, $\theta$$\_$r/)/sup/ $\tau$/ and reference e velocity (ν$\_$r/,$\omega$$\_$r/)$\^$$\tau$/. System output of the mobi-le robot is velocity of driving wheels. We introduce limit velocity for preventing high initial speed. From simulation results, we can see the proposed control rule is stable.

  • PDF

Modeling and Path-Tracking of Wheeled-Mobile Robots having the Limited Drive-Torques (구동토크의 제약을 갖는 구륜이동로봇의 모델링과 경로추적)

  • 김종수;문종우
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.8
    • /
    • pp.482-491
    • /
    • 2003
  • In this paper are presented kinematic and dynamic modeling and path-tracking of four-wheeled mobile robots with 2 d.o.f haying the limited drive-torques. Controllability of wheeled-mobile robots is revealed by the kinematic model. Instantaneously coincident coordinate system, force/torque propagation and Newton's equilibrium law are used to drive the dynamic model. When drive-torques generated by inverse dynamics exceed the limitation, we make wheeled-mobile robots follow the reference path by modifying the planned reference trajectory with time-scaling. The controller is introduced to compensate for error owing to modeling uncertainty and measurement noise. And simulation results prove that method proposed by this paper is efficient.

Dynamic Modeling and Path-tracking of Differential Drive Wheeled-Mobile Robots (구동토크의 제약을 갖는 차동 구륜이동로봇의 동역학 모델링과 경로추적)

  • Moon, Jong-Woo
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.51 no.1
    • /
    • pp.45-51
    • /
    • 2002
  • In this paper are presented dynamic modeling and path-tracking of differential drive wheeled-mobile robots(WMRs) having the limited drive-torques. Instantaneously coincident coordinate system, force/torque propagation and Newton's equilibrium law are used to induce the dynamic model. When drive-torques generated by inverse dynamics exceed the limitation, we make wheeled-mobile robots follow the reference path by modifying the planned reference trajectory with time-scaling method. The controller is introduced to compensate for error owing to modeling uncertainty and measurement noise. And simulation results prove that method proposed by this paper is efficient.

Numerical Method for Calculating Fourier Coefficients and Properties of Water Waves with Shear Current and Vorticity in Finite Depth

  • JangRyong Shin
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.256-265
    • /
    • 2023
  • Many numerical methods have been developed since 1961, but unresolved issues remain. This study developed a numerical method to address these issues and determine the coefficients and properties of rotational waves with a shear current in a finite water depth. The number of unknown constants was reduced significantly by introducing a wavelength-independent coordinate system. The reference depth was calculated independently using the shooting method. Therefore, there was no need for partial derivatives with respect to the wavelength and the reference depth, which simplified the numerical formulation. This method had less than half of the unknown constants of the other method because Newton's method only determines the coefficients. The breaking limit was calculated for verification, and the result agreed with the Miche formula. The water particle velocities were calculated, and the results were consistent with the experimental data. Dispersion relations were calculated, and the results are consistent with other numerical findings. The convergence of this method was examined. Although the required series order was reduced significantly, the total error was smaller, with a faster convergence speed.

The Spatially Closed Universe

  • Park, Chan-Gyung
    • Journal of the Korean earth science society
    • /
    • v.40 no.4
    • /
    • pp.353-381
    • /
    • 2019
  • The general world model for homogeneous and isotropic universe has been proposed. For this purpose, we introduce a global and fiducial system of reference (world reference frame) constructed on a (4+1)-dimensional space-time, and assume that the universe is spatially a 3-dimensional hypersurface embedded in the 4-dimensional space. The simultaneity for the entire universe has been specified by the global time coordinate. We define the line element as the separation between two neighboring events on the expanding universe that are distinct in space and time, as viewed in the world reference frame. The information that determines the kinematics of the geometry of the universe such as size and expansion rate has been included in the new metric. The Einstein's field equations with the new metric imply that closed, flat, and open universes are filled with positive, zero, and negative energy, respectively. The curvature of the universe is determined by the sign of mean energy density. We have demonstrated that the flat universe is empty and stationary, equivalent to the Minkowski space-time, and that the universe with positive energy density is always spatially closed and finite. In the closed universe, the proper time of a comoving observer does not elapse uniformly as judged in the world reference frame, in which both cosmic expansion and time-varying light speeds cannot exceed the limiting speed of the special relativity. We have also reconstructed cosmic evolution histories of the closed world models that are consistent with recent astronomical observations, and derived useful formulas such as energy-momentum relation of particles, redshift, total energy in the universe, cosmic distance and time scales, and so forth. The notable feature of the spatially closed universe is that the universe started from a non-singular point in the sense that physical quantities have finite values at the initial time as judged in the world reference frame. It has also been shown that the inflation with positive acceleration at the earliest epoch is improbable.