• Title/Summary/Keyword: Reference coordinate

Search Result 286, Processing Time 0.024 seconds

History Management Technology of Building Construction and Maintenance Using Vector Photo Information and BIM (벡터사진 정보와 BIM을 활용한 건축물의 시공·유지관리 이력관리기술)

  • Kim, Kyoon-Tai;Lim, Myung-Gu;Kim, Gu-Taek
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.6
    • /
    • pp.605-613
    • /
    • 2014
  • Recently proposed intelligent images are generating, storing and managing along with existing image information and 5W1H information. Therefore, these vector images can be useful in searching and managing photos taking during building construction and maintenance processes. In addition, when the vector photos, a key to the intelligent image, is linked with BIM, it is possible to find BIM objects by utilizing information included in vector photos. And if the taken vector photo is saved as attributes of the extracted object, the vector photo can be managed as the historical data. Furthermore, this new technology will contribute to make the management of construction information more efficiently. This study is about the development of the technology of extracting BIM objects from vector photo information and managing the attributes of the extracted objects. Also the prototype modules was developed and tested to evaluate the processes of setting reference points, converting coordinate system, calculating positions, and so on. Through these processes, it was confirmed that the possibility of extracting BIM objects from vector photos and of managing attribute data of objects.

Construction of Static 3D Ultrasonography Image by Radiation Beam Tracking Method from 1D Array Probe (1차원 배열 탐촉자의 방사빔추적기법을 이용한 정적 3차원 초음파진단영상 구성)

  • Kim, Yong Tae;Doh, Il;Ahn, Bongyoung;Kim, Kwang-Youn
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.2
    • /
    • pp.128-133
    • /
    • 2015
  • This paper describes the construction of a static 3D ultrasonography image by tracking the radiation beam position during the handy operation of a 1D array probe to enable point-of-care use. The theoretical model of the transformation from the translational and rotational information of the sensor mounted on the probe to the reference Cartesian coordinate system was given. The signal amplification and serial communication interface module was made using a commercially available sensor. A test phantom was also made using silicone putty in a donut shape. During the movement of the hand-held probe, B-mode movie and sensor signals were recorded. B-mode images were periodically selected from the movie, and the gray levels of the pixels for each image were converted to the gray levels of 3D voxels. 3D and 2D images of arbitrary cross-section of the B-mode type were also constructed from the voxel data, and agreed well with the shape of the test phantom.

Proper motion of Galactic globular cluster NGC 104

  • Kim, Eun-Hyeuk;Kim, Min-Sun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.84.1-84.1
    • /
    • 2010
  • Globular clusters (GCs) are known to be one of the oldest objects in the Milky Way. Therefore the dynamical informations of GCs are very important to understand the formation and evolution of our Galaxy. Motion of GCs in the halo of Galaxy can be traced by radial velocities of individual stars and proper motions of GCs. Measuring the radial velocities of stars in GCs has been challenging for decades because the brightness of stars (even for the brightest stars) in GCs are too faint (V>14) to measure the radial velocities. The available large telescopes (D>4m) enable us to observe the spectra of stars in the red giant branch of GCs, and it is now more plausible to measure the radial velocities of stars in GCs. On the contrary it is still very difficult to measure the sky-projected two-dimensional motion of GCs in Galaxy even with the large telescopes because the distance to GCs is quite large (~10kpc) compared to the spatial resolution of present-day large ground-based telescopes. Instruments on-board Hubble Space Telescope are ideal to study the proper motion of GCs thanks to their extremely high spatial resolution (~0.05arcsec). We report a study of proper motion of NGC 104, one of the most metal-rich Milky Way GCs, based-on archival images of NGC 104 observed using HST/ACS. Using the stars in Small Magellanic Cloud as reference coordinate, we are able to measure the proper motions of individual stars in NGC 104 with a high precision. We discuss the internal dynamics of stars in NGC 104 by comparing proper motion results based-on shorter (<1yr) and longer (~7yrs) time durations.

  • PDF

Voice personality transformation using an orthogonal vector space conversion (직교 벡터 공간 변환을 이용한 음성 개성 변환)

  • Lee, Ki-Seung;Park, Kun-Jong;Youn, Dae-Hee
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.1
    • /
    • pp.96-107
    • /
    • 1996
  • A voice personality transformation algorithm using orthogonal vector space conversion is proposed in this paper. Voice personality transformation is the process of changing one person's acoustic features (source) to those of another person (target). In this paper, personality transformation is achieved by changing the LPC cepstrum coefficients, excitation spectrum and pitch contour. An orthogonal vector space conversion technique is proposed to transform the LPC cepstrum coefficients. The LPC cepstrum transformation is implemented by principle component decomposition by applying the Karhunen-Loeve transformation and minimum mean-square error coordinate transformation(MSECT). Additionally, we propose a pitch contour modification method to transform the prosodic characteristics of any speaker. To do this, reference pitch patterns for source and target speaker are firstly built up, and speaker's one. The experimental results show the effectiveness of the proposed algorithm in both subjective and objective evaluations.

  • PDF

Determination of Absolute Coordinates of Permanent GPS Site (GPS 상시관측소의 절대좌표 산정에 관한 연구)

  • 윤홍식;황진상
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.19 no.4
    • /
    • pp.415-423
    • /
    • 2001
  • This paper deals with the data processing method relative to reference frames through the calculation of absolute coordinates of permanent GPS site which was established at Sungkyunkwan University. In this paper. we computed the ITRF97 coordinates with high precision (0.0001 ppm) from GPS data analysis. Also, we derived the accurate coordinates referred to WGS84 and Korean Geodetic Datum (KGD) using transformation parameters provided. ITRF97 coordinates were computed by using the GIPSY-OASIS II (GOA II) software and the algorithms for determining the position developed Jet Propulsion Laboratory (JPL). The coordinates referred to WGS84 and KGD were derived from the transformation parameters provided by International Earth Rotation Service (IERS) and National Geography Institute (NGI). The parameters determined by NGI were calculated from the 2000 project of the establishment of geocentric coordinate system. We tested its availability through the comparison of the coordinates obtained from local GPS data analysis.

  • PDF

Photogrammetry 기법을 활용한 MSC 설치면의 정밀 측정

  • Woo, Sung-Hyun;Kim, Hong-Bae;Moon, Sang-Mu;Im, Jong-Min
    • Aerospace Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.126-133
    • /
    • 2004
  • Photogrammetry, as its name implies, is a 3-dimensional coordinate measuring technique that uses photographs as the fundamental medium for metrology. In the last few years the accuracy of photogrammetry has increased dramatically thanks to the rapid advance of digital camera manufacturing technique. This paper discusses photogrammetric measurement of the interface surface of MSC(Multi-Spectral Camera), which is a main payload of KOMPSAT-2. Total 24 paper targets on the objective surfaces and two scale bars calibrated with high accuracy were used for measurement, and multiple images were taken from 11 different camera angles by using a spacecraft rotation dolly. As a result of analysis, 3D coordinates of each targeted point were obtained and the flatness value based on the selected reference plane was calculated and compared with the pre-determined requirement. The technique acquired by this study is expected to be used for the 3D precise measurement of ultra-light weight and inflatable space structures such as a satellite antenna and a solar array.

  • PDF

Exemplar-Based Image Inpainting for Spherical Panoramic Image (구면 파노라마 영상을 위한 표본 기반 영상 인페인팅)

  • Kim, Bosung;Park, Jong-Seung
    • Journal of KIISE
    • /
    • v.43 no.4
    • /
    • pp.437-449
    • /
    • 2016
  • Previous image processing techniques based on plane-to-plane transformations cannot be utilized for spherical panoramic images. In this paper, we propose a new method to inpaint a spherical panoramic image using exemplar, which is deformed by the location of the patch. Our proposed method makes the deformed exemplar patch by latitude and uses it as the reference patch to restore the damaged area. The exemplar-based inpainting method is based on the planar image coordinate system and thus the classical method cannot be applied to the spherical panoramic image. The merit of our proposed method is the fact that it is not dependent on the location of the damaged area. From the experimental results, we proved that our proposed method satisfies the original purpose of the exemplar-based inpainting technique for the spherical panoramic image.

6D ICP Based on Adaptive Sampling of Color Distribution (색상분포에 기반한 적응형 샘플링 및 6차원 ICP)

  • Kim, Eung-Su;Choi, Sung-In;Park, Soon-Yong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.9
    • /
    • pp.401-410
    • /
    • 2016
  • 3D registration is a computer vision technique of aligning multi-view range images with respect to a reference coordinate system. Various 3D registration algorithms have been introduced in the past few decades. Iterative Closest Point (ICP) is one of the widely used 3D registration algorithms, where various modifications are available nowadays. In the ICP-based algorithms, the closest points are considered as the corresponding points. However, this assumption fails to find matching points accurately when the initial pose between point clouds is not sufficiently close. In this paper, we propose a new method to solve this problem using the 6D distance (3D color space and 3D Euclidean distances). Moreover, a color segmentation-based adaptive sampling technique is used to reduce the computational time and improve the registration accuracy. Several experiments are performed to evaluate the proposed method. Experimental results show that the proposed method yields better performance compared to the conventional methods.

A Study on the Development of a Specialized Prototype End-Effector for RDSs(Robotic Drilling Systems) (RDS(Robotic Drilling System) 구축을 위한 전용 End-Effector Prototype 개발에 관한 연구)

  • Kim, Tae-Hwa;Kwon, Soon-Jae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.6
    • /
    • pp.132-141
    • /
    • 2013
  • Robotic Drilling Systems(RDSs) set the standard for the factory automation systems in aerospace manufacturing. With the benefits of cost effective drilling and predictive maintenance, RDSs can provide greater flexibility in the manufacturing process. The system can be easily adopted to manage very complex and time-consuming processes, such as automated fastening hole drilling processes of large aircraft sections, where it would be difficult accomplished by workers following teaching or conventional guided methods. However, in order to build an RDS based on a CAD model, the precise calibration of the Tool Center Point(TCP) must be performed in order to define the relationships between the fastening-hole target and the End Effector(EEF). Based on the kinematics principle, the robot manipulator requires a new method to correct the 3D errors between the CAD model of the reference coordinate system and the actual measurements. The system can be called as a successful system if following conditions can be met; a. seamless integration of the industrial robot controller and the IO Level communication, b. performing pre-defined drilling procedures automatically. This study focuses on implementing a new technology called iGPS into the fastening-hole-drilling process, which is a critical process in aircraft manufacturing. The proposed system exhibits better than 100-micron 3D accuracy under the predefined working space. Based on the proposed EEF fastening-hole machining process, the corresponding processes and programs are developed, and its feasibility is studied.

DETERMINATION OF THE INVARIANT POINT OF THE KOREAN VLBI NETWORK RADIO TELESCOPES: FIRST RESULTS AT THE ULSAN AND TAMNA OBSERVATORIES

  • Yoo, Sung-Moon;Jung, Taehyun;Lee, Sung-Mo;Yoon, Ha Su;Park, Han-Earl;Chung, Jong-Kyun;Roh, Kyoung-Min;Wi, Seog Oh;Cho, Jungho;Byun, Do-Young
    • Journal of The Korean Astronomical Society
    • /
    • v.51 no.5
    • /
    • pp.143-153
    • /
    • 2018
  • We present the first results of the invariant point (IVP) coordinates of the KVN Ulsan and Tamna radio telescopes. To determine the IVP coordinates in the geocentric frame (ITRF2014), a coordinate transformation method from the local frame, in which it is possible to survey using the optical instrument, to the geocentric frame was adopted. The least-square circles are fitted in three dimensions using the Gauss-Newton method to determine the azimuth and elevation axes in the local frame. The IVP in the local frame is defined as the mean value of the intersection points of the azimuth axis and the orthogonal vector between the azimuth and elevation axes. The geocentric coordinates of the IVP are determined by obtaining the seven transformation parameters between the local frame and the east-north-up (ENU) geodetic frame. The axis-offset between the azimuth and elevation axes is also estimated. To validate the results, the variation of coordinates of the GNSS station installed at KVN Ulsan was compared to the movement of the IVP coordinates over 9 months, showing good agreement in both magnitude and direction. This result will provide an important basis for geodetic and astrometric applications.