• Title/Summary/Keyword: Reference Frequency

Search Result 1,636, Processing Time 0.028 seconds

Synchronization Design of Satellite TDMA Network

  • Ko, Kyung-Su;Oh, Il-Hyuk;Yoo, Youn-Sang;Oh, Sang-Kyun;Lee, Hui-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.7A
    • /
    • pp.552-559
    • /
    • 2012
  • In this paper, we introduce a frame structure of the satellite TDMA network and the synchronization method thereof. The primary station transmits a special burst called reference burst which provides reference time to network. By using this reference burst all nodes achieve initial acquisition and synchronization. We consider time drift due to the node and satellite mobility, time shift due to the node position, Doppler shift due to the node mobility and frequency offsets as important factors of the frame structure. Simulation results show that the proposed frame structure and synchronization method guarantee accurate synchronization performance when the node is even in low SNR as well as 25 kHz frequency offsets.

Hybrid Reference Function for Stable Stepwise Inertial Control of a Doubly-Fed Induction Generator

  • Yang, Dejian;Lee, Jinsik;Hur, Kyeon;Kang, Yong Cheol
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.86-92
    • /
    • 2016
  • Upon detecting a frequency event in a power system, the stepwise inertial control (SIC) of a wind turbine generator (WTG) instantly increases the power output for a preset period so as to arrest the frequency drop. Afterwards, SIC rapidly reduces the WTG output to avert over-deceleration (OD). However, such a rapid output reduction may act as a power deficit in the power system, and thereby cause a second frequency dip. In this paper, a hybrid reference function for the stable SIC of a doubly-fed induction generator is proposed to prevent OD while improving the frequency nadir (FN). To achieve this objective, a reference function is separately defined prior to and after the FN. In order to improve the FN when an event is detected, the reference is instantly increased by a constant and then maintained until the FN. This constant is determined by considering the power margin and available kinetic energy. To prevent OD, the reference decays with the rotor speed after the FN. The performance of the proposed scheme was validated under various wind speed conditions and wind power penetration levels using an EMTP-RV simulator. The results clearly demonstrate that the scheme successfully prevents OD while improving the FN at different wind conditions and wind power penetration levels. Furthermore, the scheme is adaptive to the size of a frequency event.

Dual-Mode Reference-less Clock Data Recovery Algorithm (이중 모드의 기준 클록을 사용하지 않는 클록 데이터 복원 회로 알고리즘)

  • Kwon, Ki-Won;Jin, Ja-Hoon;Chun, Jung-Hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.5
    • /
    • pp.77-86
    • /
    • 2016
  • This paper describes a dual-mode reference-less CDR(Clock Data Recovery) operating at full / half-rate and its operation algorithm. Proposed reference-less CDR consists of a frequency detector, a phase detector, a charge pump, a loop filter, a voltage controlled oscillator, and a digital block. The frequency and phase detectors operate at both full / half-rate for dual-mode operation and especially the frequency detector is capable of detecting the difference between data rate and clock frequency in the dead zone of general frequency detectors. Dual-mode reference-less CDR with the proposed algorithm can recover the data and clock within 1.2-1.3 us and operates reliably at both full-rate (2.7 Gb/s) and half-rate (5.4 Gb/s) with 0.5-UI input jitter.

Load Frequency Control by Optimal Linear Tracking (최적선형 추적법에 의한 부하-주파수제어)

  • 김훈기;곽노홍;문영현
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.2
    • /
    • pp.83-92
    • /
    • 1989
  • This paper presents a load frequency control by optimal linear tracking, which can be well adapted to practical power systems with successive load disturbances. Conventional Load Frequency Controls (LEC's) have a feedback control scheme of the state error deviated from the post-disturbance steady state. This requires the modification of reference everytime the system encounters load changes. In this study, a new feedback scheme of LEC is developed by using the optimal linear tracking method with a fixed reference. As a result, the proposed LFC, which requires no reference modification, can be efficiently applied to power systems with successive disturbances such as load changes due to the on-off operations of reclosers or feeder switches. Another feature of the proposed LFC is that it adopts an algorithm to calculate an optimal post-fault steady state with the consideration of control input changes. The proposed LFC has been tested for a 2-area power system, which shows that it can be well adapted to successive load disturbances with good frequency response.

  • PDF

Current Control of a Single-phase PWM Converter under the Distorted Source Voltage and Frequency Condition (전원 전압 왜곡과 주파수 변동 시 단상 PWM 컨버터의 전류 제어)

  • Ahn, Chang-Heon;Kim, Sang-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.4
    • /
    • pp.356-362
    • /
    • 2015
  • This paper presents a current control strategy in the synchronous reference frame for a single-phase PWM converter, which ensures sinusoidal input current control under the distorted source voltage and frequency condition. Given that the distorted source voltage distorts the phase angle for PWM converter control, the input current contains the same harmonics as the source voltage. Aside from the distorted voltage, the variation in source frequency reduces the performance of input current control. To achieve sinusoidal input current control under the distorted source voltage and frequency condition, this paper proposes a compensation strategy of current reference with the distortion component extracted from the phase angle and a detection strategy of frequency variation from the output of a synchronous reference frame phase-lock loop. The experimental results confirm the validity of the proposed method under the distorted source voltage and frequency condition.

Performance analysis of TR, DTR and PRM UWB systems in frequency selective channel (주파수 선택적 채널에서의 TR, DTR과 PRM UWB 통신 시스템 성능분석)

  • Woo Seon-Keol;Choi Ho-Seon;Yang Hoon-Gee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.5 no.1 s.9
    • /
    • pp.45-54
    • /
    • 2006
  • The UWB signal distortion in frequency selective channel has made it difficult to implement the channel estimator and the synchronizer of the UWB receiver. In this paper, we examine the performances of TR(Transmitted Reference) and DTR(Differential TR) UWB which use either reference pulse or differential method to estimate the channels. we also propose a FSK-based PRM(Pulse Repetition Modulation) UWB system as an another form of UWB system which is advantageous in frequency selective channel. Finally, resorting to statistical analysis, we examine the noise effect due to noisy reference at an auto-correlation(AcR) receiver. moreover, SNR dependance of the integration length in the AcR receiver is also investigated.

  • PDF

On the study of block replacement policy using LFR (LFR기법을 이용한 블럭교체 기법에 관한 연구)

  • 오재환;김상수김미선
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.499-502
    • /
    • 1998
  • Most popular disk block replacement polices are LRU(Least Recently Used)policy and LFU(Least Frequently Used)policy. The LRU policy replaces blocks according to the most recent reference without considering the frequency of reference. The LFU policy replaces blocks according to the frequency of reference without considering the recently of the reference. In this thesis, a policy called LFR(least Frequently Use & Not Used Recently) disk block replacement policy is presented. The LFR policy subsumes the LFU policy and the NUR policy. The spectrum of the LFR policy exists between the LFU policy and the NUR policy because we co give different weight to each reference of a block. The implementation shows LFR policy outperforms the previously implemente LRU policy.

  • PDF

Estimation of Fault Location on a Power Line using the Time-Frequency Domain Reflectometry (절연전선 결함 위치 추정에 대한 시간-주파수 영역 반사파 계측법의 적용)

  • Doo, Seung-Ho;Kwak, Ki-Seok;Park, Jin-Bae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.2
    • /
    • pp.268-275
    • /
    • 2008
  • In this paper, we introduce a new method for detecting and estimating faults on a power line using the time-frequency domain reflectometry system. The system rests upon time-frequency signal analysis and uses a chirp signal which is multiplied by Gaussian envelope. The chirp signal is used as a reference signal, and we can get the reflected signal from a fault on a wire. To detect and estimate faults, we analyze the reflected signal by Wigner time-frequency distribution function and normalized time-frequency cross correlation function. In this paper we design an optimal reference signal for power line and implement a system for estimating fault distance on a power line with the TFDR implemented by PXI equipments. This approach is verified by some experiments with HIV 2.25mm power lines.

Stepwise Inertial Control of a Doubly-Fed Induction Generator to Prevent a Second Frequency Dip

  • Kang, Mose;Lee, Jinsik;Hur, Kyeon;Park, Sang Ho;Choy, Youngdo;Kang, Yong Cheol
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2221-2227
    • /
    • 2015
  • To arrest a frequency nadir, a stepwise inertial control (SIC) scheme generates a constant active power reference signal of a wind turbine generator (WTG) immediately after a disturbance and maintains it for the predetermined time. From that point, however, the reference of a WTG abruptly decreases to restore the rotor speed for the predefined period. The abrupt decrease of WTG output power will inevitably cause a second frequency dip. In this paper, we propose a modified SIC scheme of a doubly-fed induction generator (DFIG) that can prevent a second frequency dip. A reference value of the modified SIC scheme consists of a reference for the maximum power point tracking control and a constant value. The former is set to be proportional to the cube of the rotor speed; the latter is determined so that the rotor speed does not reach the minimum operating limit by considering the mechanical power curve of a DFIG. The performance of the modified SIC was investigated for a 100 MW aggregated DFIG-based wind power plant under various wind conditions using an EMTP-RV simulator. The results show that the proposed SIC scheme significantly increases the frequency nadir without causing a second frequency dip.

Fractional-N Frequency Synthesizer with a l-bit High-Order Interpolative ${\sum}{\Delta}$ Modulator for 3G Mobile Phone Application

  • Park, Byeong-Ha
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.2 no.1
    • /
    • pp.41-48
    • /
    • 2002
  • This paper presents a 18-mW, 2.5-㎓ fractional-N frequency synthesizer with l-bit $4^{th}$-order interpolative delta-sigma ($\Delta{\;}$\sum$)modulator to suppress fractional spurious tones while reducing in-band phase noise. A fractional-N frequency synthesizer with a quadruple prescaler has been designed and implemented in a $0.5-\mu\textrm{m}$ 15-GHz $f_t$ BiCMOS. Synthesizing 2.1 GHzwith less than 200 Hz resolution, it exhibits an in-band phase noise of less than -85 dBc/Hz at 1 KHz offset frequency with a reference spur of -85 dBc and no fractional spurs. The synthesizer also shows phase noise of -139 dBc/Hz at an offset frequency of 1.2 MHz from a 2.1GHz center frequency.