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Load Frequency Control by Optimal Linear Tracking
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Abstract-This paper presents a load frequency control by optimal linear tracking,
which can be well adapted to practical power systems with successive load distur-
bances. Conventional Load Frequency Controls (LFC’s) have a feedback control
scheme of the statc error deviated from the post-disturbance steady state. This
requires the modification of reference everytime the system encounters load
changes. In this study, a new feedback scheme of LFC is developed by using the
optimal linear tracking method with a fixed reference. As a result, the proposed
LFC, which requires no reference modification, can be efficiently applied to power
systems with successive disturbances such as load changes due to the on-off opera-
tions of reclosers or feeder switches. Another feature of the proposed LFC is that
it adopts an algorithm to calculate an optimal post-fault steady state with the
consideration of control input changes. The proposed LFC has been tested for a
2-arca power system, which shows that it can be well adapted to successive load
disturbances with good frequency response.

1. Introduction Power system should be operated to provide

with good quality of electricity. Recently, the fast
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§iF & [tk DA CERIBR g IH P lied electricity. The £ trol has
BE 1R 19885 18 131 of supplied elec r1c1. y. fe requency control ha;
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2 KB 1989F 1 H 134 operation, Theories of optimal frequency control
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are well-established with the use of the optimal
control theory. However, most of power systems
still experience difficulties in suppressing frequency
fluctuation, Since Elgerd and Fosha 1)proposed
an optimal frequency control technique based on
the linear regulator theory, many papers have been
presented, However, most of the conventional LFC
(Load-Frequency Control)techniques adopted a
feedback control scheme by taking the state error
deviated from the post disturbance steady state.
This requires the successive reference modification
in the LFC whenever the system encounters a
disturbances such as load changes and generator
outages. On the other hand, Kwatny et al, 2)at-
tempted to apply an optimal tracking theory, They
presented the basic idea of the optimal tracking
approach to the load frequency control without
the detailed discussion of the determination of
target trajectory.

In this study, a new feedback scheme of LFC
is developed by using the optimal linear tracking
method with a fizxed reference. The proposed LFC
technique presents a precise method of the deter-
mination of target trajectory after system distur-
bance. As a result, the proposed LFC, which is
of no need of reference modification, can be effi-
ciently applied to practical power systems with
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successive a disturbances such as load changes due
to the on-off operations of reclosers or feeder
Another feature of the proposed LFC
is that it adopts an algorithm to calculate an

switches,

optimal post fault steady state with the conside-
ration of control input changes,

The proposed LFC technique is tested for a two-
area power system, which shows that it can be
well adapted to successive load disturbances with
good frequency response,

2. System Modeling

The generator control system has two control
loops : megawatt-frequency control loop and vol-
tage excitation loop. Since the latter has very fast
response compared with the former, the excitation
control loop is usually regarded to be independent
of the megawatt-frequency control loop, On the
other hand, the voltage variation should be ref-
lected to the frequency control loop due to the
voltage dependency of loads.

This study deals with the load frequency control
of a 2-area system, and adopts a LFC model which
was established by Aggarwal 3)under the above
considerations, The control block diagram is shown
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Fig. 1 Frequency control model of 2-area system.
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in Fig. I. However, this study considers the exci-
tation system in more detail in area I in order
to take account of the load changes due to voltage
variations. In area II, it is assumed that the vol-
tage is controlled optimally with fast response by
the practical approximation as mentioned above,
This assumption allows us to consider the generat-
or terminal voltage as a control variable,

For the control system in Fig, I, the state var-
iables x, input signals u, and disturbance variables
APy are selected as follows :

State variable vector :

X=[x,, x,, X3, Xa, Xs, X1, Xa, Lo, X1 Ty )"

x, = SAL(D)dE x, =Af, (1) X3=APFP,
Xy =AX g xs = [ AfL(B)dl xe=Af, (1)
X, = AP, Xy = AX gp2 xD:A,‘/ll
Xp=AV,q xn=A4V;

(1)
Input signal :
u=[APc, AP, AQ, Al V,] (2)

Where AP, Pc, : positions of speed changers of
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Generator [ and Generator [
respectively
: control variable for excitation
system

AQy

AV, | voltage perturbation in area
Il (used as a control variable)
Disturbances :

APy=[ APy, APy
where APg4, APy ! load disturbances in Areas
Iand 1

The state equation for the system model can now
be giyen as follows :

(8)=Ax(2)+Bu(t)+TAP, (3)

The system matrices are as follows :

3. Load Frequency Control by Optimal
Linear Traking

3.1 Introduction
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A disturbances such as load changes, generator
outages cause the fluctuation of system frequency,
The load frequency controller should be designed
to suppress these frequency fluctuations efficien-
tly. Most of conventional LFCs are based on the
linear regulation technique, which are unsuitable
to the practical application as mentioned earlier,
In this study, an optimal linear tracking technique
is adopted to develop an efficient LFC which can
be well-adapted to the practical power systems
with incessant load changes.

If the system encounters a disturbance, the
system state is fluctuated in accordance with the
dynamic behaviours of the system and will finally
transfer to a steady state via transient states. It
is noted here that the final steady state can be
controlled by changing references of input signals.
With the use of the conventional approach, the
LFC problem can be formulated as follows :

Mini mize

(ult)

(u e TRIn(E) - uy) lde o

subject to <~ Ax | Bui I'4Pa

where t, : time when the disturbance occurs,
xss . steady state after disturbance.
ug  reference input after disturbance.
Therefore, the frequency control should be per-

formed by the following procedures :

(i) If the system encounters a distur ance,
determine optimal steady state x"g and
optimal refercnce inputs u'g after distur-
bance.

(ii ) Perform an optimal control which can make
the system state approach to the optimal
post disturbance steady state with the
fastest speed.

(iii) If any other disturbance is encountered,
repeat the above procedures,

On the other hand, any disturbance which may
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occur in the near future is not considered in the
determination of the input control at the present
moment, This is because the disturbance occurs
at random in time and magnitude,

In the above procedures, the LFC can be for-
mulated as an optimal linear tracking problem
if we consider the trajectory of the post-distur-
bance steady state as the target trajectory to trac-
k. Consequently, this study is aimed to apply the
linear tracking technique to the LFC. In this sec-
tion, an efficient method to determine the optimal
target trajectory after disturbance is presented,
and next the optimal LFC algorithm will be de-
veloped.

3.2 Calculation of Optim]l Target Trajectory and
Reference Input after Disturbance

An occurrence of disturbance transfers the sys-
tem state to a post-disturbance steady state via
the transient fluctuation, where the final steady
state is determined by the disturbance and the
post-disturbance reference inputs. For example,
the system frequency and the generator terminal
voltage can be controlled arbitrarily by changing
the reference position of the speed changer and
the reference voltage in the exciter system respec-
tively. This means that the post-disturbance st-
eady state should be determined by taking into
account its relation with the refernce input for
a disturbance. The post-disturbance steady states
will be regarded as the target trajectory denoted
by x4 Then, the following steady state equation
must hold,

Axyl Bugt 'AP,— 0 (6)

Where ugq4 : reference input after disturbance

Here it is noted that any x4 and ugq which satisfy
the above equation can be the target trajectory
and reference input for the system disturbance
APy, On the other hand, the system operation
has the restrictions that the final steady state of
the frequency deviation and the integrated freq-
uency deviation must be zero. That is

Af(E)—=0 as t—( (7a)
. 7b)
/Dfmdz—»o as t— 0 (7
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In order to simplify the optimization procedure,
we assume that the system has been operated at
an optimal state before the system disturbance
occurs, and that the least changes of states and
inputs can roughly guarantee the optimality of
the post-disturbance target trajectory. This as-
sumption for the optimization procedure enables
us to get an approximated optimal solution with
simple calculation procedures. It is not impossible
to analyze the optimality of the system operation
condition rigorously, However, that requires ex-
cessively long computation time to apply to the
on-line control. Thus, the above assumpution is
considered to be reasonable in the practical point
of view,

With the consideration of the above discussions,
the determination of the optimal target trajectory
can be formulated as the following optimization

problem,
M,lr‘]tnill.]le ; [xTxi+ulu, (8a)
Su_bject to
Axq+ Bui+TAP:= 0 (8b)
Xdr = Xaz ™ Xas = Xag = 0 (8c)

The last constraints (Eq. 8c) are given by Eqs
(7a) and (7b).

In this study, an efficient method is developed
rather than solving the above minimization prob-
lem directly.

Let a new variable vector y and a matrix G defined
by :

)’=[xd3, Xag, Xizy Xago Xdsr Xdws Udys Udg, Udas Uag |7
(9a)
H:[AR BR:I (gb)

where matrix Ay is a reduced matrix of matrix
A by eliminating the 1, 2, 5, 6th columns and the
1st ant and 5th rows, The two rows are eliminated
since the equation are trivial. The matrix Bg is
also a reduced matrix by eliminating the 1st and
5th rows in matrix B. In the above definitior, state

BT ROl 2Bt S5} - FuisHo]

variables Xu;, Xaz, Xgs, X4¢ are not included in the
new variable vector y Eq.(8c) directly,

The optimization problem (8) can now be refor-
mulated as follows :

Minimize A(y)=1/2 ¥7y
subject to Hy +1zAF,= 0

(10a)
(10b)

Where I'y is a reduced matrix by eliminating
the 1st and 5th rows in matrix T

With the use of the Lagrangean multiplier
method, the optinal solution y* can be easily
calculated as follows :

Y= —H'HH| ' T4 AP, an

Once the optimal solution y* is calculated, the
optimal target x"q and optimal reference input u
“a are directly determined by the definition of y
in Eq,(9a),

3.3 Optimal Control Input

The previous section gives the optimal target
trajectory and optimal reference input after dis-
turbance, The next task is to determine the op-
timal control input to track the given target tra-
jectory.
For the given optimal target trajectory and op-
timal reference input, the LFC problem can be
formulated as follows :

System dynamic equation :

x—Ax-+ Bu+TADP (12a)

Performance index to be minimized, :

=12 [ x (D) - x 50I7QUx (D) —x (1)
+lu(e) —uile Ny R{u(t)—u%(2))idt
(12b)

where
x*a(t), ua(t) : optimal target trajectory and
optimal reference input for the
successive load changes respectively.,

The above linear tracking problem can be solved
with the use of the optimal linear tracking theory
® and the optimal control input can be calculated
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as follows :

u*(t) =~ RUBTKX(t) - R 'B's(t) {uk(i),
(13)
Where the matrix K and vector s(t) are deter-
mined by the following equations

0= -KA - A"K- Qr KBR'B'K (14)

$(t)=-ATs ()+ KBR "B"s (1) + Qx¥ (1)

-KBu%(t) -KIap, (15)

Of these equations, the former is the algebraic

Riccati equation, and the latter is a differential

equation to determine the command signal to track

the target trajectory. The solution methods are
briefly described.

3.3.1 Solution of Algebraic Riccati Equation

There are many methods presented to solve the
algebraic Riccati equation. However, the compu-
tation time rapidly increases with the dimensio-
nality of matrix K. This study adopts the matrix
quadratic solution algorithm presented by Potter
® since the algorithm is suitable to a large-dimen-
sionality Riccati equation with good convergence
and comparatively short computation time.

The algorithm can be briefly described as follows:

(1) Compose a (2nX2n) matrix M as follows:

AT Q
M= .
M [BR‘B’ A (16)

(2) Calculate all the eigenvalues of matrix M,
and calculate the eigenvectors associated with
the positive-real eigenvalues only. Here it

is noted that matrix M has n positive-real

eigenvalues,

(3) Compose a (2nxn) matrix T by using the
n eigenvectors obtained in step (2). Each
column of matrix T is set up by taking one
of the selected eigenvectors, By partitioning
the matrix T into two parts : upper and
lower parts, we get two matrices B and C
as follows :
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(17)

C

where ay : eigenvector of matrix M associated
with positive-real eigenvalue A,
(4) The solution of the algebraic Riccati equat-
ion is given by

K--BC' (18)

In the above algorithm, the eigenvalues and eigen-
vectors are calculated by using the IMSL program
package.

3.3.2 Optimal Solution of Tracking Command
Signal
The second term in Eq. (13) is called the com-
mand signal for the linear tracking. The optimal
command signal can be calculated by solving Eq.
(15). Since the final time is infinite, the optimal
command signal s*(t) can be calculated with an
approximation as follows,
For the approximated approach, we choose arbit-
rary large time T, and T, which satisfy the follo-
wing relations,

0<T, €T, <o (19)

The equation (11) can be rewritten in a simple
froms :

s =Gs(H)+w(t) (20)
where

G=KBR'A (21a)

w(t) = QxX(t)— K(BuX(t)+T'AP.) (22b)

In the above equation, it is noted that w(t) is
a piecewise constant vector.

The command signal at time t=T,, that is, s(T
,), has the following relation with the signal s(t)
at an arbitrary moment t € [0, T:].
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s(T)=expl G(T— #) s ()
+f"exp[G(Tz— o w (1) dr (22)

This equation can be solved for the command sig-
nal s(t), which gives

s(t) =e>_cp[~G(T2w t)]*E(Tz)
_j,,nexp(G(Trng(t)dr: (23)

Since w(t) is a piecewise constant vector, the
evaluation of integration of Eq.(23) gives

s(t)=expl— G(T:— ) [ s(Ty)

+Gw ()] -G 'w(i) (24)

If we assume that the system control is performed
in the time interval [O,T,], then matrix exp[-G
(T, —t)] is a nearly zero matrix due to the fact
that all eigenvalues of matrix G are negative-real,
This allows the following approximation with res-
pect to s(t)
s(t)y=—G'wl(t)
=—[KBR 'B™{Qx-*—K[ Bu ($)+I'AP. (3) ]}
for all te[0, T.] (25)

Control gain matrix K and input command signal
8(t), which can be calculated from Eq.(18) and
(25), determine the optimal control input u*(t)
by Eq(13). This optimal input controls the system
state to track the target trajectory after distur-
bance,

4. System Simulation

The LFC for the two-area system given in Fig,
1 is simulated by computer programming in order
to test the proposed LFC control algorithm. The
effect of load changes due to the voltage variation
is reflected to the LFC simulation in area I by
including the whole excitation system in the ge-
nerator model, However, the generator terminal
voltage in area II is regarded as an control input
as mentioned earlier, The system constants are
given in Table I,
The proposed LFC technique has been tested for
various load disturbances such as load outage, load

{518 ARl 2igt S — FuHof

Table 1 System constants for the model system.

f*=60Hz

D,=D,=8.33x107°p. u. MW/Hz
Tgv] - Tgvzzo. 08s

T.*=0.545p. u. MW/H.,

APy =0.01p. u MW

o — 8, =230°

T* =3 Ptiel /2] V,|=0.05
OPu/3|Vi|=8Pw/2|V,|=1.0

Saturation factor Sz=125

Tfm':‘G. 17s

Tx= TE/KE:"’ 10.0s
T,=0.0s

T,=10s

HI:Hz:S. OS
Tev=T.,=0.3s

Ri=R,=24Hz/p.u. MW

Pﬂ :prz:ZOO()MW

AP =0.0p. u. MW
Qp="—"Prn/Prp=—10

T T =—0Ptiel /3| V.| =0.05
[V =|V.*[=10

Kfzdjo. 57
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increase, and sudden load changes due to on-off
operation of feeder switches and reclosers, In the
computer simulation, it is assumed that the LFC
system has a perfect disturbance observer, The
design of disturbance observer is remained for
further study. The simulation results are listed
for the two typical patterns of load changes,

4.1 Simulation Results for Step Load Disturbance

This is the case where the load is suddenly in-
creased and lasted for a long time, The simulation
results is as given in Fig, 2. The graphs are plotted
only for the steam valve position, generation out-
put and frequency deviation among the 9 state
variables, In this case, it is assumed that the du-
ration of the load disturbance is sufficiently long
so that no other disturbance occurs until the tran-
sition of system state is completed. These simula-
tion results show that the proposed LFC technique
has better performance than the conventional
techniques, It is noted that there is no steady
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state frequency error in the proposed LFC simu-
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according to the clearance of the fault, In this case,

lation. the load disturbance is as shown in Fig. 3 (a). The
response of the power generation and frequency
Ao, fluctuation are shown in Fig. 3(b) and (c). This
0.0 p.w results shows that the proposed LFC tracks the
5 lim(: target trajectory with the high speed, and it can
be well-adapted to the practical power system
which is subjected to successive disturbances,
(a) Load disturbance curve
6. 0E-004
1. 815-002
AN Xgv,
3  time, sec
Al’g,
0.01+ 000 3 time, sec 1. 2E- 003
(b) Response of power generation output and steam valve position
6. 0 E-003 . .
’ N The above simulations are based on the assump-
V\ N tion that the load disturbance can be exactly

1 2 3 time, sec
of,

9. 0E-003

(c) Frequency response

Fig 2 Frequency response for step load distur
bance,

4.2 Simulation Resuits for the Load Disturbance
by Recloser on-off Operation

This case deals with the LFC for the disturbance

by the recloser on-off operation, where a tempo-

rary fault triggers the feeder switch open and next

the circuit is reclosed by the recloser operarion

90

observed, However, the LFC system requires a
disturbance observer, and a practical disturbance
observer yields a smooth disturbance curve even
for a step load disturbance, A feature of te propos-
ed technique is that it can be applicable for the
smoothly varying load disturbances, which can
be considered as an improved LFC technique,

b APd 5

0 time
-0.02p. u

(a) Load disturbance curve.
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—1.7E—-002

time, sec

7>

3. 5E-002

af,

Afe

time, sec

- 3b-B
— L 7E002

(b) Response of generator power and steam valve position

7. 01 004

AX w2

8. 0E-003 3b-C

Fig. 3 LFC Simulation for the Load disturbances
due to the recloser on-off operation,

5. Conclusion

A load frequency control technique is developed
on the basis of the application of optimal linear
tracking, which is applicable to the real power
systems with successive disturbances. The results
can be summarized as follows :

(1) The proposed LFC technique, which is of
no need of reference modification, is appli-
cable to the practical power systems with
successive disturbances, and it can realize
the optimal LFC system with a disturbance
observer,

(2) A precise method has been presented to
determine the optimal target trajectory. This
makes it possible to achieve the steady state
optimization after disturbances.

(3) The system simulation shows that the pro-

HEME FEYH| 2B Bot-- FERHOf

time, sec

posed LFC technique yields convenient
performance for load disturbance due to
the recloser on-off operation,

(4) The proposed LFC technique is applicable
to the power system with a practical dis-
turbance observer which yields a smoothly
varying load disturbance curve,

REFERENCES

1) Elgerd, O. 1. and E. Fosha, “The megawatt
frequency control problem : A new approach
via optimal control theory,” IEEE Trans. on
PAS, vol. PAS-89, pp. 563-579,, 1970.

2) Kwatny, H. G. et al, “An optimal tracking
approach to load-frequency control,” IEEE
Trans, on PAS, vol, PAS-94, no.5, pp. 1635-1-
643., 1975.

3) Aggarwal, R. P. et al, “Damping effects of
excitation control in load-frequency control
system,” Proceedings of IEE,, vol. 121, no.11,
ppl1409~1416, 1974.

4) Athans, M, and P, L, Falb, “Optimal Control:
an introduction to the theory and its applica-
tion,” Mecgraw Hill,, 1966,

5) Bose, A, and 1. Atiyyah, “Regulation error in
load frequency control.,,” IEEE Trans. on PAS,
vol. PAS-99, no.2, pp.650-656., 1980.

6) Kirk, D, E. : Optimal Control theory an int-
roduction, Prentice Hall, 1970.

7) Minesy, S. M. and E. V. Bohn, “Optimum load
frequency continuous control with unknown
deterministic power cemand,” IEEE Trans,

91



Trans. KIEE, Vol 38 No. 2 FEB 1989

9) Schulte, R. P. and D. E. Badley, “Problems
associated with generator-load following in
system operation,” IEEE Trans. on PAS, vol.

PAS-102, no.6, pp. 1566-1569, 1983

on PAS, PAS-91, pp. 1910-1915,, 1972.
8) Potter, J. E., “Matrix quadratic solution,” J.
SIAM Application of Mathematics. vol.14, no.

3., 1966.

92



