• Title/Summary/Keyword: Reference Beam

Search Result 517, Processing Time 0.034 seconds

Material Property-Estimate Technique Based on Natural Frequency for Updating Finite Element Model of Orthotropic Beams

  • Kim, Kookhyun;Park, Sungju;Lee, Sangjoong;Hwang, Seongjun;Kim, Sumin;Lee, Yonghee
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.6
    • /
    • pp.481-488
    • /
    • 2020
  • Composite materialsuch as glass-fiber reinforced plastic and carbon-fiber reinforced plastic (CFRP) shows anisotropic property and have been widely used for structural members and outfitings of ships. The structural safety of composite structures has been generally evaluated via finite element analysis. This paper presents a technique for updating the finite element model of anisotropic beams or plates via natural frequencies. The finite element model updates involved a compensation process of anisotropic material properties, such as the elastic and shear moduli of orthotropic structural members. The technique adopted was based on a discrete genetic algorithm, which is an optimization technique. The cost function was adopted to assess the optimization problem, which consisted of the calculated and referenced low-order natural frequencies for the target structure. The optimization process was implemented with MATLAB, which includes the finite element updates and the corresponding natural frequency calculations with MSC/NASTRAN. Material properties of a virtual cantilevered orthotropic beam were estimated to verify the presented method and the results obtained were compared with the reference values. Furthermore, the technique was applied to a cantilevered CFRP beam to successfully estimate the unknown material properties.

Removal of Radio Frequency Interference of 1.29 GHz Doppler Wind Profiler Radar (1.29 GHz 도플러 윈드프로파일러 스펙트럼에서 전파 간섭 신호 제거)

  • Lee, Kyung-Hun;Kwon, Byung-Hyuk;Kim, Yu-Jin
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.3
    • /
    • pp.393-398
    • /
    • 2022
  • During the test operation period of the wind profiler prototype, radio frequency interference (RFI) contamination occurred in the spectrum. The reference of the RFI that removed the algorithm appearing in the wind profiler spectrum were investigated, and a new algorithm was developed to remove the RFI. First, it was filtered with a threshold value of 0.1 m/s of the spectral width, and the range of the number of gates with the same radial velocity was determined according to whether the beam was a vertical beam or an oblique beam. RFI contamination was removed through filtering and scanning of non-weather signals, and the continuity of wind vectors calculated from the improved spectral radial velocity was verified.

A nonlocal integral Timoshenko beam model for free vibration analysis of SWCNTs under thermal environment

  • Liani, Mohamed;Moulay, Noureddine;Bourada, Fouad;Addou, Farouk Yahia;Bourada, Mohamed;Tounsi, Abdelouahed;Hussain, Muzamal
    • Advances in materials Research
    • /
    • v.11 no.1
    • /
    • pp.1-22
    • /
    • 2022
  • In this paper, the nonlocal integral Timoshenko beam model is employed to study the free vibration characteristics of singled walled carbon nanotubes (SWCNTs) including the thermal effect. Based on the nonlocal continuum theory, the governing equations of motion are formulated by considering thermal effect. The influences of small scale parameter, the chirality of SWCNTs, the vibrational mode number, the aspect ratio of SWCNTs and temperature changes on the thermal vibration properties of single-walled nanotubes are examined and discussed. Results indicate significant dependence of natural frequencies on the nonlocal parameter, the temperature change, the aspect ratio and the chirality of SWCNTs. This work should be useful reference for the application and the design of nanoelectronics and nanoelectromechanical devices that make use of the thermal vibration properties of SWCNTs.

Dynamic analysis of functionally graded (FG) nonlocal strain gradient nanobeams under thermo-magnetic fields and moving load

  • Alazwari, Mashhour A.;Esen, Ismail;Abdelrahman, Alaa A.;Abdraboh, Azza M.;Eltaher, Mohamed A.
    • Advances in nano research
    • /
    • v.12 no.3
    • /
    • pp.231-251
    • /
    • 2022
  • Dynamic behavior of temperature-dependent Reddy functionally graded (RFG) nanobeam subjected to thermomagnetic effects under the action of moving point load is carried out in the present work. Both symmetric and sigmoid functionally graded material distributions throughout the beam thickness are considered. To consider the significance of strain-stress gradient field, a material length scale parameter (LSP) is introduced while the significance of nonlocal elastic stress field is considered by introducing a nonlocal parameter (NP). In the framework of the nonlocal strain gradient theory (NSGT), the dynamic equations of motion are derived through Hamilton's principle. Navier approach is employed to solve the resulting equations of motion of the functionally graded (FG) nanoscale beam. The developed model is verified and compared with the available previous results and good agreement is observed. Effects of through-thickness variation of FG material distribution, beam aspect ratio, temperature variation, and magnetic field as well as the size-dependent parameters on the dynamic behavior are investigated. Introduction of the magnetic effect creates a hardening effect; therefore, higher values of natural frequencies are obtained while smaller values of the transverse deflections are produced. The obtained results can be useful as reference solutions for future dynamic and control analysis of FG nanobeams reinforced nanocomposites under thermomagnetic effects.

Shielding Evaluation and Activation Analysis of Facilities by Neutron Generator for the Development of 20 Feet Container Inspection System

  • Jin-Woo Lee;Dae-Sung Choi;Gyo-Seong Jeong
    • Journal of Radiation Industry
    • /
    • v.17 no.4
    • /
    • pp.443-449
    • /
    • 2023
  • KAERI(Korea Atomic Energy Research Institute) is conducting research and development of large-scale radiation generators and the latest radiation measuring instruments. In particular, research and development of security screening equipment using an electron beam accelerator and a neutron generator is in progress recently. Globally, 20 ft containers are used to transport imports and exports, and electron beam accelerators are radiation sources to measure the shape of the material inside the container during customs inspections in each country. KAERI is developing a device that can use an electron beam accelerator and a neutron generator sequentially to grasp the shape of various materials as well as the location of the internal target material. In this study, when using the neutron generator, the radiation dose and the degree of activation by neutron for the facility and surrounding environment, facility equipment were simulated using MCNP and FISPACT code. As a result, the shielding structures inside and outside the radiation control area were satisfactory to the reference level established conservatively based on the Korean Nuclear Act.

A Study on the Ultrnsonic Distance Amplitude Characteristics Curve for Weld Defects Evaluation of Titanium Weld Zone (티타늄 용접부의 용접결함평가를 위한 초음파거리진폭특성곡선에 관한 연구)

  • Yi, Won;Park, Hee-Dong;Yun, In-Sik
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.4
    • /
    • pp.7-12
    • /
    • 2008
  • This study proposes integrity evaluation method of weld zone in titanium using titanium distance amplitude characteristics curve(TDACC) and ultrasonic signals. For these purposes, the ultrasonic signals for porosity defects of weld zone in titanium are acquired in the type of time series data and echo strength. 4 lines in the DACC indicated damage evaluation standard of weld zone in titanium. The acquired ultrasonic signals agree fairly well with the measured results of reference block and sensitivity block(defect location, bean1 propagation distance, echo strength, etc). The proposed TDACC in this study agree fairy well with the measured results of weld zone in titanium(weld defects as porosity). The proposed TDACC in this study can be used for integrity evaluation of weld zone in titanium.

Construction of Through Transmission Scanning System for Weld Defects Detection of Rail Weld Zone (레일용접부의 용접결함검출을 위한 투과주사시스템의 구축)

  • Yun, In-Sik
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.1 s.69
    • /
    • pp.30-35
    • /
    • 2005
  • This study proposes construction of through transmission for weld defects detection of rail weld zone from ultrasonic signals. For these purposes, the ultrasonic signals for defects(porosity and crack) of weld zone in rails are acquired in the type of time series data and echo strength. 6 lines in the distance amplitude characteristics curve(DACC) indicated damage evaluation standard of weld zone in rails. The acquired ultrasonic signals agree flirty well with the mesured results of reference block and sensitivity block(defect location beam propagation distance, echo strength, etc). The proposed construction of through transmission in this study can be used for weld defects detection of rail weld zone.

Expanding the classic moment-curvature relation by a new perspective onto its axial strain

  • Petschke, T.;Corres, H.;Ezeberry, J.I.;Perez, A.;Recupero, A.
    • Computers and Concrete
    • /
    • v.11 no.6
    • /
    • pp.515-529
    • /
    • 2013
  • The moment-curvature relation for simple bending is a well-studied subject and the classical moment-curvature diagram is commonly found in literature. The influence of axial forces has generally been considered as compression onto symmetrically reinforced cross-sections, thus strain at the reference fiber never has been an issue. However, when dealing with integral structures, which are usually statically indeterminate in different degrees, these concepts are not sufficient. Their horizontal elements are often completely restrained, which, under imposed deformations, leads to moderate compressive or tensile axial forces. The authors propose to analyze conventional beam cross-sections with moment-curvature diagrams considering asymmetrically reinforced cross-sections under combined influence of bending and moderate axial force. In addition a new diagram is introduced that expands the common moment-curvature relation onto the strain variation at the reference fiber. A parametric study presented in this article reveals the significant influence of selected cross-section parameters.

Angular-Spatial Multiplexed Volume Holographic Memory System (각.공간 복합 다중화 체적 홀로그래픽 메모리 시스템)

  • 강훈종;이승현;한종욱;김은수
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.12
    • /
    • pp.75-82
    • /
    • 1998
  • Many multiplexing techniques are proposed for high storage densities in a volume hologram. In this paper, we present a hybrid angularly and spatially multiplexed volume holographic memory system. Multiple holograms are recorded by using reference and object waves with different incident angles and positions that are changed by step motors. A hologram is written by exposing the crystal with recording time schedule to the interference pattern of the object beam and a reference plane wave. Finally, we show experimental results of the storage of three layers of 300 multiplexed holograms in a LiNbO$_3$ : Fe crystal.

  • PDF

Development of a Wide Dose-Rate Range Electron Beam Irradiation System for Pre-Clinical Studies and Multi-Purpose Applications Using a Research Linear Accelerator

  • Jang, Kyoung Won;Lee, Manwoo;Lim, Heuijin;Kang, Sang Koo;Lee, Sang Jin;Kim, Jung Kee;Moon, Young Min;Kim, Jin Young;Jeong, Dong Hyeok
    • Progress in Medical Physics
    • /
    • v.31 no.2
    • /
    • pp.9-19
    • /
    • 2020
  • Purpose: This study aims to develop a multi-purpose electron beam irradiation device for preclinical research and material testing using the research electron linear accelerator installed at the Dongnam Institute of Radiological and Medical Sciences. Methods: The fabricated irradiation device comprises a dual scattering foil and collimator. The correct scattering foil thickness, in terms of the energy loss and beam profile uniformity, was determined using Monte Carlo calculations. The ion-chamber and radiochromic films were used to determine the reference dose-rate (Gy/s) and beam profiles as functions of the source to surface distance (SSD) and pulse frequency. Results: The dose-rates for the electron beams were evaluated for the range from 59.16 Gy/s to 5.22 cGy/s at SSDs of 40-120 cm, by controlling the pulse frequency. Furthermore, uniform dose distributions in the electron fields were achieved up to approximately 10 cm in diameter. An empirical formula for the systematic dose-rate calculation for the irradiation system was established using the measured data. Conclusions: A wide dose-rate range electron beam irradiation device was successfully developed in this study. The pre-clinical studies relating to FLASH radiotherapy to the conventional level were made available. Additionally, material studies were made available using a quantified irradiation system. Future studies are required to improve the energy, dose-rate, and field uniformity of the irradiation system.