DOI QR코드

DOI QR Code

Expanding the classic moment-curvature relation by a new perspective onto its axial strain

  • Petschke, T. (E.T.S.I. de Caminos, Canales y Puertos, UPM) ;
  • Corres, H. (E.T.S.I. de Caminos, Canales y Puertos, UPM) ;
  • Ezeberry, J.I. (E.T.S.I. de Caminos, Canales y Puertos, UPM) ;
  • Perez, A. (E.T.S.I. de Caminos, Canales y Puertos, UPM) ;
  • Recupero, A. (DIC, UNIME)
  • Received : 2012.04.15
  • Accepted : 2012.11.16
  • Published : 2013.06.01

Abstract

The moment-curvature relation for simple bending is a well-studied subject and the classical moment-curvature diagram is commonly found in literature. The influence of axial forces has generally been considered as compression onto symmetrically reinforced cross-sections, thus strain at the reference fiber never has been an issue. However, when dealing with integral structures, which are usually statically indeterminate in different degrees, these concepts are not sufficient. Their horizontal elements are often completely restrained, which, under imposed deformations, leads to moderate compressive or tensile axial forces. The authors propose to analyze conventional beam cross-sections with moment-curvature diagrams considering asymmetrically reinforced cross-sections under combined influence of bending and moderate axial force. In addition a new diagram is introduced that expands the common moment-curvature relation onto the strain variation at the reference fiber. A parametric study presented in this article reveals the significant influence of selected cross-section parameters.

Keywords

References

  1. Au, F.T.K., Bai, B.Z.Z. and Kwan, A.K.H. (2005), "Complete moment-curvature relationship of reinforced normal- and high-strength concrete beams experiencing complex load history", Comput. Concrete, 2(4), 309-324. https://doi.org/10.12989/cac.2005.2.4.309
  2. Camara, J. (1988), Comportamento em servico de estructuras de betao armado e pre-esforcado, UTL, Lisboa, PT.
  3. Comite Europeen du Beton (CEB-FIB) (1985), Design manual on cracking and deformations, EPFL, Lausanne, CH.
  4. Comite Europeen du Beton (CEB-FIB) (1990), Model code 1990.
  5. Eurocode -2 (2004), Design of concrete structures - Part 1-1: General rules and rules for buildings, CEN, Brussels, B.
  6. Falkner, H. (1969), "Zur Frage der Rissbildung durch Eigen- und Zwangspannung infolge Temperatur in Stahlbetonbauwerken", Deutscher Ausschuss fur Stahlbeton (Heft 208).
  7. Jaccoud, J.P. and Favre, R. (1982), Fleche des structures en beton arme, Institut de Statique et Structures Beton Arme et Precontraint, EPFL, Lausanne, CH.
  8. Kaklauskas, G. and Gribniak, V. (2011), "Eliminating shrinkage effect from moment curvature and tension-stiffening relationships of reinforced concrete members", J. Struct. Eng., 137(12), 1460-1469. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000395
  9. Kim, S.P. (2007), "Nonlinear analysis of RC beams based on simplified moment-curvature relation considering fixed-end rotation", Comput. Concrete, 4(6), 457-475. https://doi.org/10.12989/cac.2007.4.6.457
  10. Lam, J., Ng, P. and Kwan, A. (2010), "Tension stiffening in concrete beams. Part 2: member analysis", Proceedings of the Institution of Civil Engineers. Structures and buildings, 163(1), 29-39. https://doi.org/10.1680/stbu.2009.163.1.29
  11. Leonhardt, F. (1978), Vorlesung uber Massivbau, Springer, Berlin, D.
  12. Mari, A., Bairan, J. and Duarte, N. (2010), "Long-term deflections in cracked reinforced concrete flexural members", Eng. Struct., 32(3), 829-842. https://doi.org/10.1016/j.engstruct.2009.12.009
  13. MathWorks (2002), "MATLAB program manual".
  14. Mayer, H. (1962), "Schubversuche an Stahlbeton-Rechteckbalken mit gleichmassig verteilter Belastung", (Heft 145).
  15. Murcia, J. (1991), "Analisis aproximado en el tiempo de secciones de hormigon en servicio. Propuesta de un nuevo factor de calculo de flechas diferidas", Hormigon y Acero, (181), 9-17.
  16. Najdanovic, D. (1987), Contribution a la verification de l'etat d'utilisation des colonnes sous deformations imposees, EPFL, Lausanne, CH.
  17. Ng, P., Lam, J. and Kwan, A. (2010), "Tension stiffening in concrete beams. Part I: FE analysis", Proceedings of the Institution of Civil Engineers. Structures and buildings, 163(1), 19-28. https://doi.org/10.1680/stbu.2009.163.1.19
  18. Ning, F., Mickleborough, N.C. and Chan, C.M. (2001), "Service load response prediction of reinforced concrete flexural members", Struct. Eng. Mech., 12(1), 1-16. https://doi.org/10.12989/sem.2001.12.1.001
  19. Pam, H.J., Kwan, A.K.H. and Ho, J.C.M. (2001), "Post-peak behavior and flexural ductility of doubly reinforced normal- and high-strength concrete beams", Comput. Concrete, (In press).
  20. Perez, A. (1996), Comportamiento en servicio del hormigon estructural estudio teorico y experimental, UPM, Madrid, ES.
  21. Pfeiffer, U. (2004), Die nichtlineare Berechnung ebener Rahmen aus Stahl- oder Spannbeton mit Berucksichtigung der durch aufreissen bedingten Achsendehnung, TUHH, Hamburg, Germany.
  22. Rostasy, F., Koch, R. and Leonhardt, F. (1976), "Zur Mindestbewehrung fur Zwang von Aussenwanden aus Stahlleichtbeton", Deutscher Ausschuss fur Stahlbeton (Heft 267).
  23. Trost, H. (1967), "Auswirkungen des Superpositionsprinzips auf Kriech- und Relaxationsprobleme bei Beton und Spannbeton", Beton-und Stahlbetonbau, 11(Heft 10), 230-238.

Cited by

  1. Behaviour of reinforced concrete rectangular sections based on tests complying with seismic construction requirements vol.17, pp.4, 2016, https://doi.org/10.1002/suco.201500107
  2. A new approach to determine the moment-curvature relationship of circular reinforced concrete columns vol.15, pp.3, 2015, https://doi.org/10.12989/cac.2015.15.3.321