• Title/Summary/Keyword: Reed-Solomon(RS) codes

Search Result 39, Processing Time 0.019 seconds

FPGA Implementation of Reed-Solomon Encoder for image transmission (영상 전송을 위한 Reed-Solomon Encoder의 FPGA 구현)

  • Kim, Dong-Nyeon;Cai, Yu Qing;Byon, Kun-sik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.907-910
    • /
    • 2009
  • This paper is the FPGA Implementation of Reed-Solomon Encoder that is one of Error control Codes. Reed-Solomon codes are block-based error control codes with a wide range of applications in digital communications. RS codes are strong on burst errors because it process signals as symbol. We simulate this system using Matlab from Mathworks and design it using System Generator from Xilinx. We refer Matlab source in Implementation of Reed-Solomon Error Control Coding for Compressed Images by Simon Anthony Raspa.

  • PDF

On the Implementation of CODEC for the Double-Error Correction Reed-Solomon Codes (2중 오류정정 Reed-Solomon 부호의 부호기 및 복호기 장치화에 관한 연구)

  • Rhee, Man-Young;Kim, Chang-Kyu
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.2
    • /
    • pp.10-17
    • /
    • 1989
  • The Berlekamp-Massey algorithm, the method of using the Euclid algorithm, and Fourier transforms over a finite field can be used for the decoding of Reed-Solomon codes (called RS codes). RS codes can also be decoded by the algorithm that was developed by Peterson and refined by the Gorenstein and Zierler. However, the decoding of RS codes using the Peterson-Gorenstein-Zieler algorithm offers sometimes computational or implementation advantages. The decoding procedure of the double-error correcting (31,27) Rs code over the symbol field GF ($2^5$) will be analyized in this paper. The complete analysis, gate array design, and implementation for encoder/decoder pair of (31.27)RS code are performed with a strong theoretical justification.

  • PDF

Erasure decoding strategies for RS product code reducing undetected error rate (검출 불능 오류율을 향상기키는 Reed-Solomon 적부호의 이레이져 복호방법)

  • 김정헌;염창열;송홍엽;강구호;김순태;백세현
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.4B
    • /
    • pp.427-436
    • /
    • 2001
  • RS product codes are widely used in digital storage systems. There are lots of decoding strategies for product code for short-length RS codes. Unfortunately many of them cannot be applied to long-length RS product codes because of the complexity of decoder. This paper proposes new decoding strategies which can be used in long length RS product codes.

  • PDF

Efficient VLSI Architecture for Factorization in Soft-Decision Reed-Solomon List Decoding (연판정 Reed-Solomon 리스트 디코딩의 Factorization을 위한 효율적인 VLSI 구조)

  • Lee, Sung-Man;Park, Tae-Guen
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.11
    • /
    • pp.54-64
    • /
    • 2010
  • Reed-Solomon (RS) codes are the most widely used error correcting codes in digital communications and data storage. Recently, Sudan found algorithm of list decoder for RS codes. List decoder has larger decoding radius than conventional hard-decision decoding algorithms and return more than one candidate polynomial. But, the algorithm includes interpolation and factorization step that demand massive computations. In this paper, an efficient architecture and processing schedule are proposed. The architecture consists of R-MAC, memories, and control unit. The R-MAC computes both of RC and PU steps that are main part of the factorization algorithm. The proposed architecture can achieve higher hardware utilization efficiency (HUE) and throughput by using efficient processing schedule and memory architecture. Also, the architecture can be designed flexibly with scalability for various applications. We design and synthesize our architecture using Dongbu-Anam $0.18{\mu}m$ standard cell library and the maximum clock frequency is 330MHz.

Area-efficient Interpolation Architecture for Soft-Decision List Decoding of Reed-Solomon Codes (연판정 Reed-Solomon 리스트 디코딩을 위한 저복잡도 Interpolation 구조)

  • Lee, Sungman;Park, Taegeun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.3
    • /
    • pp.59-67
    • /
    • 2013
  • Reed-Solomon (RS) codes are powerful error-correcting codes used in diverse applications. Recently, algebraic soft-decision decoding algorithm for RS codes that can correct the errors beyond the error correcting bound has been proposed. The algorithm requires very intensive computations for interpolation, therefore an efficient VLSI architecture, which is realizable in hardware with a moderate hardware complexity, is mandatory for various applications. In this paper, we propose an efficient architecture with low hardware complexity for interpolation in soft-decision list decoding of Reed-Solomon codes. The proposed architecture processes the candidate polynomial in such a way that the terms of X degrees are processed in serial and the terms of Y degrees are processed in parallel. The processing order of candidate polynomials adaptively changes to increase the efficiency of memory access for coefficients; this minimizes the internal registers and the number of memory accesses and simplifies the memory structure by combining and storing data in memory. Also, the proposed architecture shows high hardware efficiency, since each module is balanced in terms of latency and the modules are maximally overlapped in schedule. The proposed interpolation architecture for the (255, 239) RS list decoder is designed and synthesized using the DongbuHitek $0.18{\mu}m$ standard cell library, the number of gate counts is 25.1K and the maximum operating frequency is 200 MHz.

Design of Reed Solomon Encoder/Decoder for Compact Disks (컴팩트 디스크를 위한 Reed Solomon 부호기/복호기 설계)

  • 김창훈;박성모
    • Proceedings of the IEEK Conference
    • /
    • 2000.11b
    • /
    • pp.281-284
    • /
    • 2000
  • This paper describes design of a (32, 28) Reed Solomon decoder for optical compact disk with double error detecting and correcting capability. A variety of error correction codes(ECCs) have been used in magnetic recordings, and optical recordings. Among the various types of ECCs, Reed Solomon(RS) codes has emerged as one the most important ones. The most complex circuit in the RS decoder is the part for finding the error location numbers by solving error location polynomial, and the circuit has great influence on overall decoder complexity. We use RAM based architecture with Euclid's algorithm, Chien search algorithm and Forney algorithm. We have developed VHDL model and peformed logic synthesis using the SYNOPSYS CAD tool. The total umber of gate is about 11,000 gates.

  • PDF

New Time-Domain Decoder for Correcting both Errors and Erasures of Reed-Solomon Codes

  • Lu, Erl-Huei;Chen, Tso-Cho;Shih, Chih-Wen
    • ETRI Journal
    • /
    • v.38 no.4
    • /
    • pp.612-621
    • /
    • 2016
  • A new time-domain decoder for Reed-Solomon (RS) codes is proposed. Because this decoder can correct both errors and erasures without computing the erasure locator, errata locator, or errata evaluator polynomials, the computational complexity can be substantially reduced. Herein, to demonstrate this benefit, complexity comparisons between the proposed decoder and the Truong-Jeng-Hung and Lin-Costello decoders are presented. These comparisons show that the proposed decoder consistently has lower computational requirements when correcting all combinations of ${\nu}$ errors and ${\mu}$ erasures than both of the related decoders under the condition of $2{\nu}+{\mu}{\leq}d_{\min}-1$, where $d_{min}$ denotes the minimum distance of the RS code. Finally, the (255, 223) and (63, 39) RS codes are used as examples for complexity comparisons under the upper bounded condition of min $2{\nu}+{\mu}=d_{\min}-1$. To decode the two RS codes, the new decoder can save about 40% additions and multiplications when min ${\mu}=d_{min}-1$ as compared with the two related decoders. Furthermore, it can also save 50% of the required inverses for min $0{\leq}{\mu}{\leq}d_{\min}-1$.

A Versatile Reed-Solomon Decoder for Continuous Decoding of Variable Block-Length Codewords (가변 블록 길이 부호어의 연속 복호를 위한 가변형 Reed-Solomon 복호기)

  • 송문규;공민한
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.3
    • /
    • pp.187-187
    • /
    • 2004
  • In this paper, we present an efficient architecture of a versatile Reed-Solomon (RS) decoder which can be programmed to decode RS codes continuously with my message length k as well as any block length n. This unique feature eliminates the need of inserting zeros for decoding shortened RS codes. Also, the values of the parameters n and k, hence the error-correcting capability t can be altered at every codeword block. The decoder permits 3-step pipelined processing based on the modified Euclid's algorithm (MEA). Since each step can be driven by a separate clock, the decoder can operate just as 2-step pipeline processing by employing the faster clock in step 2 and/or step 3. Also, the decoder can be used even in the case that the input clock is different from the output clock. Each step is designed to have a structure suitable for decoding RS codes with varying block length. A new architecture for the MEA is designed for variable values of the t. The operating length of the shift registers in the MEA block is shortened by one, and it can be varied according to the different values of the t. To maintain the throughput rate with less circuitry, the MEA block uses both the recursive technique and the over-clocking technique. The decoder can decodes codeword received not only in a burst mode, but also in a continuous mode. It can be used in a wide range of applications because of its versatility. The adaptive RS decoder over GF($2^8$) having the error-correcting capability of upto 10 has been designed in VHDL, and successfully synthesized in an FPGA chip.

A Versatile Reed-Solomon Decoder for Continuous Decoding of Variable Block-Length Codewords (가변 블록 길이 부호어의 연속 복호를 위한 가변형 Reed-Solomon 복호기)

  • 송문규;공민한
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.3
    • /
    • pp.29-38
    • /
    • 2004
  • In this paper, we present an efficient architecture of a versatile Reed-Solomon (RS) decoder which can be programmed to decode RS codes continuously with my message length k as well as any block length n. This unique feature eliminates the need of inserting zeros for decoding shortened RS codes. Also, the values of the parameters n and k, hence the error-correcting capability t can be altered at every codeword block. The decoder permits 3-step pipelined processing based on the modified Euclid's algorithm (MEA). Since each step can be driven by a separate clock, the decoder can operate just as 2-step pipeline processing by employing the faster clock in step 2 and/or step 3. Also, the decoder can be used even in the case that the input clock is different from the output clock. Each step is designed to have a structure suitable for decoding RS codes with varying block length. A new architecture for the MEA is designed for variable values of the t. The operating length of the shift registers in the MEA block is shortened by one, and it can be varied according to the different values of the t. To maintain the throughput rate with less circuitry, the MEA block uses both the recursive technique and the over-clocking technique. The decoder can decodes codeword received not only in a burst mode, but also in a continuous mode. It can be used in a wide range of applications because of its versatility. The adaptive RS decoder over GF(2$^{8}$ ) having the error-correcting capability of upto 10 has been designed in VHDL, and successfully synthesized in an FPGA chip.

High-Performance Variable-Length Reed-Solomon Decoder Architecture for Gigabit WPAN Applications (기가비트 WPAN용 고성능 가변길이 리드-솔로몬 복호기 구조)

  • Choi, Chang-Seok;Lee, Han-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.49 no.1
    • /
    • pp.25-34
    • /
    • 2012
  • This paper presents a universal architecture for variable-length eight-parallel Reed-Solomon (RS) decoder for high-rate WPAN systems. The proposed architecture can support not only RS(255,239) code but various shortened RS codes. Moreover, variable-length architecture provides variable low latency for various shortened RS codes and the eight-parallel design also provides high data processing rate. Using 90-$nm$ CMOS standard cell technology, the proposed RS decoder has been synthesized and measured for performance. The proposed RS decoder can provide a maximum 19-$Gbps$ data rate at clock frequency 300 $MHz$.