• Title/Summary/Keyword: Redundancy Avoidance

Search Result 16, Processing Time 0.024 seconds

Towards a Redundant Response Avoidance for Intelligent Chatbot

  • Gwon, Hyuck-Moo;Seo, Yeong-Seok
    • Journal of Information Processing Systems
    • /
    • v.17 no.2
    • /
    • pp.318-333
    • /
    • 2021
  • Smartphones are one of the most widely used mobile devices allowing users to communicate with each other. With the development of mobile apps, many companies now provide various services for their customers by studying interactive systems in the form of mobile messengers for business marketing and commercial promotion. Such interactive systems are called "chatbots." In this paper, we propose a method of avoiding the redundant responses of chatbots, according to the utterances entered by the user. In addition, the redundant patterns of chatbot responses are classified into three categories for the first time. In order to verify the proposed method, a chatbot is implemented using Telegram, an open source messenger. By comparing the proposed method with an existent method for each pattern, it is confirmed that the proposed method significantly improves the redundancy avoidance rate. Furthermore, response performance and variation analysis of the proposed method are investigated in our experiment.

Study of an Omni-directional Mobile Robot with Kinematic Redundancy (기구학적 여유 자유도를 지니는 전방향 모바일 로봇에 관한 연구)

  • Jung, Eui-Jung;Yi, Byung-Ju;Kim, Whee-Kuk
    • The Journal of Korea Robotics Society
    • /
    • v.3 no.4
    • /
    • pp.338-344
    • /
    • 2008
  • Most omni-directional mobile robots have to change their trajectory for avoiding obstacles regardless of the size of the obstacles. However, an omni-directional mobile robot having kinematic redundancy can maintain the trajectory while the robot avoids small obstacles. This works deals with the kinematic modeling and motion planning of an omni-directional mobile robot with kinematic redundancy. This robot consists of three wheel mechanisms. Each wheel mechanism is modeled as having four joints, while only three joints are necessary for creating the omni-directional motion. Thus, each chain has one kinematic redundancy. Two types of wheel mechanisms are compared and its kinematic modeling is introduced. Finally, several motion planning algorithms using the kinematic redundancy are investigated. The usefulness of this robot is shown through experiment.

  • PDF

Redundancy Utilizations of Redundant Robot Manipulators Based on Configuration Control (형태제어에 기초한, 여유자유도를 갖는 로보트 머니퓰레이터의 여유자유도 이용에 관한 연구)

  • ;Homayoun Seraji
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.4
    • /
    • pp.422-432
    • /
    • 1992
  • Previous investigations of redundant manipulators have often focussed on local optimization for redundancy resolution by using the Jacobian pseudoinverse to solve the instantaneous relationship between the joint and end-effector velocities. This paper establishes some new goals for redundancy resolution at position level by using configuration control approach which has been recently developed. Minimum gravity loading, joint limit avoidance, minimum sensitivity, maximum stiffness and minimum impulse are introduced as redundancy resolution goals. These new goals for redundancy resolution allow more efficient utilizations of the redundant joints based on the desired task requirements. Simple computer simulation examples are given for illustration.

  • PDF

Collision Avoidance Based on Null Space Projection for a Nonholonomic Mobile Manipulator (비홀로노믹 모바일 매니퓰레이터의 영공간 투영에 기반한 충돌 회피)

  • Kim, KyeJin;Yoon, InHwan;Song, Jae-Bok
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.1
    • /
    • pp.32-39
    • /
    • 2022
  • Since the mobile platform and the manipulator mounted on it move at the same time in a mobile manipulator, the risk of mutual collision increases. Most of the studies on collision avoidance of mobile manipulators cannot be applied to differential drive type mobile platforms or the end-effector tends to deviate from the desired trajectory for collision avoidance. In this study, a collision avoidance algorithm based on null space projection (CANS) that solves these two problems is proposed. To this end, a modified repulsive force that overcomes the non-holonomic constraints of a mobile platform is generated by adding a virtual repulsive force in the direction of its instantaneous velocity. And by converting this repulsive force into a repulsive velocity and applying it to the null space, the end-effector of the robot avoids a collision while moving along its original trajectory. The proposed CANS algorithm showed excellent performance through self-collision avoidance tests and door opening tests.

A Collision Avoidance Scheme for Redundant Robot Manipulators (여유자유도를 갖는 로보트 머니퓰레이터의 충돌회피)

  • Lee, Jae-Man;Choi, Young-Kiu;Hwang, Chang-Sun
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.409-411
    • /
    • 1991
  • This paper presents a collision avoidance scheme for redundant robot manipulators based on the Configuration Control Scheme. We set a center line through the free space. And we use the redundancy to put the robot links, around the center line as close as possible to avoid the collision with obstacles. Computer simulation shows the effectiveness of this approach.

  • PDF

Task-based adaptive control of redundant manipulators (여유 자유도 매니퓰레이터의 작업공간 적응제어)

  • Nam, Heon-Seong;Lyou, Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.895-901
    • /
    • 1993
  • This paper present controller designs based on the configuration control framework for a redundant manipulator to accomplish the basic task of desired, end-effector motion, while utilizing the redundancy to achieve the additional tasks such as joint motion control, obstacle avoidance, singularity avoidance. etc. A task based decentralized adaptive scheme is then applied for the configuration variables to track some reference trajectories as close as possible. Simulation results for a direct-drive three-link arm in the vertical plane demonstrate its capabilities for performing various useful tasks.

  • PDF

Review on dexterity measures for kinematically redundant manipulators (여유 자유도를 갖는 매니퓨레이터의 능숙성 지수에 대한 Review)

  • 정원지;최혁렬;정완균;염영일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.62-67
    • /
    • 1990
  • A number of performance measures have been proposed for the quantification of dexterity for kinematically redundant manipulators. The use of such measures is especially important for kinematically redundant manipulators since they can satisfy the subtasks such as singularity avoidance and obstacle avoidance in addition to satisfying a specification of end-effector motion. In this paper, the advantages and disadvantages of performance measures proposed up to date are compared through simulations under the same environment. Besides, a new dexterity index for manipulators with multiple degrees of redundancy is proposed and shown to be effective through the simulation.

  • PDF

An Algorithm for Collision Avoidance of Two-Arm Robot Manipulator Using Redundancy (여유 자유도를 이용한 두 팔 로봇 매니퓰레이터의 충돌 회피 알고리즘)

  • 이석원;남윤석
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.5
    • /
    • pp.1002-1012
    • /
    • 2003
  • An algorithm is suggested for collision avoidance of two-arm robot manipulator using redundancy. End-effectors of each redundant arm should move along each prescribed straight path to complete the given task, while avoiding collision with each other. Self-motion, considered as motion of each axis not to change the position and orientation of end-effector, is utilized in order to solve this problem. At each sampling time, self-motion is executed with the view to making farther between the links of each arm. Simulation results for two-arm robot manipulator, which has 9-d.o.f. respectively, are illustrated to show the performance of the algorithm.

Geometric Singularity Avoidance of a 3-SPS/S Parallel Mechanism with Redundancy using Conformal Geometric Algebra (여유자유도를 가진 3-SPS/S 병렬 메커니즘의 등각 기하대수를 이용한 기하학적 특이점 회피)

  • Kim, Je Seok;Jeong, Jin Han;Park, Jahng Hyon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.3
    • /
    • pp.253-261
    • /
    • 2015
  • A parallel mechanism with redundancy can be regarded as a means for not only maximizing the benefits of parallel mechanisms but also overcoming their drawbacks. We proposed a novel parallel mechanism by eliminating an unnecessary degree of freedom of the configuration space. Because of redundancy, however, the solution for the inverse kinematics of the developed parallel mechanism is infinite. Therefore, we defined a cost function that can minimize the movement time to the target orientation and found the solution for the inverse kinematics by using a numerical method. In addition, we proposed a method for determining the boundary of the geometric singularity in order to avoid singularities.

Obstacle-avoidance Algorithm using Reference Joint-Velocity for Redundant Robot Manipulator with Fruit-Harvesting Applications

  • Y.S. Ryuh;Ryu, K.H.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.638-647
    • /
    • 1996
  • Robot manipulators for harvesting fruits must be controlled to track the desired path of end-effector to avoid obstacles under the consideration of collision free area and safety path. This paper presents a robot path control algorithm to secure a collision free area with the recognition of work environments. The flexible space, which does not damage fruits or branches of tree due to their flexibility and physical properties , extends the workspace. Now the task is to control robot path in the extended workspace with the consideration of collision avoidance and velocity limitation at the time of collision concurrently. The feasibility and effectiveness of the new algorithm for redundant manipulators were tested through simulations of a redundant manipulator for different joint velocities.

  • PDF