• Title/Summary/Keyword: Reduction of friction

Search Result 604, Processing Time 0.028 seconds

Effect of Geometric Surface Structure on Frictional Behavior (표면의 기하학적 형상에 따른 마찰 특성)

  • 이형석;김대은
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.205-211
    • /
    • 2000
  • Friction control is highly desirable for optimization of tribological systems. In this work, the effect of geometric structure of the solid surface on friction is investigated using a Scanning Electron Microscope equipped with a tribotester. Silicon and silicon oxide specimens were used and undulations on the surface were fabricated by mechanical and chemical methods. It is shown that the friction coefficient depends on the relative dimensions of the ball and the width of undualation. By optimizing the geometry of the undulation, friction reduction may be achieved.

  • PDF

EFFECT OF SURFACE ROUGHNESS OF MATING SURFACE AND TRANSFER LAYER ON FRICTION BETWEEN a-CNx AND $Si_3N_4$ IN NITROGEN

  • Umehara, N.;Tokoroyama, T.;Tomita, H.;Takenoshita, Y.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.155-156
    • /
    • 2002
  • During the sliding between a-CNx and $Si_3N_4$, applying nitrogen as environmental gas provided very low friction as the level of 0.01 in friction coefficient. In order to know the effect of the running-in process on the reduction of the friction, the effect of surface roughness of mating surface on friction was investigated. It was shown that smooth surface in wear scar of ball provided low friction coefficient. Friction coefficient after running-in was proportional to the Ry value of wear scar of ball. Also smooth thin transferred layer was observed on the wear scar of balls with an AFM after sliding test. Those results showed the smoothing of wear scar of ball, the generating of the transferred layer from CNx was necessary for low friction.

  • PDF

Development an Empirical Formula for the Friction Coefficient of a Circular Friction Damper (원형 마찰 감쇠기 특성의 실험식 개발)

  • Shin, Yong-Woo;Lee, Sang-Kwon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.6
    • /
    • pp.491-498
    • /
    • 2011
  • The structural vibration due to earthquake or outside impact causes serious problem for building safety. A dynamic model of a friction damper which can be constructed and installed easily is needed to reduce the vibration of the building. In this paper, the experimental equation of a circular friction damper is derived and designed for reduction of a earthquake vibration of a building. The developed experimental equation is defined to simply design the capacity on design of the circular friction damper based on the results of the performance test. Finally this experimental equation can be used for the design of a circular friction damper.

Friction Property of Angle and Width Effect for Micro-grooved Crosshatch Pattern under Lubricated Sliding Contact (Micro-scale Grooved Crosshatch Pattern의 각도 및 폭에 따른 실험적 미끄럼마찰특성)

  • Chae, Young-Hun;Kim, Seock-Sam
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.2
    • /
    • pp.110-116
    • /
    • 2011
  • The current study investigated the friction property of angle and width effect for micro-scale grooved crosshatch pattern on SKD11 steel surface against bearing steel using pin-on-disk type. The samples fabricated by photolithography process and then these are carry out the electrochemical etching process. We discuss the friction property due to the influence of a hatched-angle and a width of groove on contact surface. We could be explained the lubrication mechanism for a Stribeck curve. So It was found that the friction coefficient depend on an angle of the crosshatch on contact surface. It was thus verified that micro-scale crosshatch grooved pattern could affect the friction reduction. Also, it is play an important a width of groove to be improved the friction property. I was found that friction property has a relationship between a width and an angle for micro-grooved pattern.

Friction Characteristics of the Piston-Ring Assembly Varying Engine Operation Coditions (운전조건변화에 따른 피스톤-링 결합체 마찰특성)

  • 윤정의;김승수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.6
    • /
    • pp.1510-1519
    • /
    • 1994
  • It is important to understand the friction characteristics between piston-ring assembly and cylinder wall for the friction loss reduction as well as the solution of problem such as scuffing wear and oil consumption. A new system was developed for the piston-ring assembly friction force measurement. This system was applied to the friction force measurement to find its functional relationship with variables such as engine speed, oil viscosity, and engine load. The friction mean effective pressure(fmep) was found to have a linear relationship with$(\vpsilon{U})^{0.42}$ under motering and with$(\vpsilon{U})^{0.45}$ under firing operations, where $\vpsilon$ is the kinematic oil viscosity and U is mean piston speed.

Cavity as a New Passive Device for Reduction of Skin Friction and Heat Transfer (새로운 수동제어소자인 공동을 이용한 마찰력과 열전달 감소에 관한 연구)

  • Hahn Seonghyeon;Choi Haecheon
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.463-466
    • /
    • 2002
  • In order to examine the possibility of using a cavity as a passive device for reduction of skin friction and heat transfer, an intensive parametric study over a broad range of the cavity depth and length at different Reynolds numbers is performed for both laminar and turbulent boundary layers in the present study. Direct and large eddy simulation techniques are used for turbulent boundary layers at low and moderate Reynolds numbers, respectively. for both laminar and turbulent boundary layers over a cavity, a flow oscillation occurs due to the shear layer instability when the cavity depth and length are sufficiently large and it plays an important role in the determination of drag and heat-transfer increase or decrease. For a cavity sufficiently small to suppress the flow oscillation, both the total drag and heat transfer are reduced. Therefore, the applicability of a cavity as a passive device for reduction of drag and heat transfer is fully confirmed in the present study. Scaling based on the wall shear rate of the incoming boundary layer is also proposed and it is found to be valid in steady flow over a cavity.

  • PDF

A study on the flow resistance in the various fittings for non-newtonian fluid (비뉴우튼유체의 관이음음 유동저항에 관한 연구)

  • ;;Kim, Chun Sik
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.3 no.4
    • /
    • pp.151-157
    • /
    • 1979
  • An experomental study on drg reduction in the rough tubes is presunted using the drrective drag reducing proymer solutions. The friction factors of the rough tubes follow the maximum drag reduction asymptote for the lower Reynolds numbers in the turbulent flow. However, as the Reynols number is increased the rougher tube results deviate from the maximum drag rduction asymptote sooner than the less rough tube results. There appears a systematic deviation from the maximum drag reduction asymptote depending on the relative roughness just as friction factors for the Newtonian hluid inthe rough tubes exhibit in the turbulent region. The minor loss results inthe various fittings such as elbows, tees, and gate valves are presunted The fittings show higher values of the loss coefficient in the drag reducing polymer solutions than in the Newtonian fluid, which is quite contrary to the drag reduction phenomenon in the straight tubes. The eqivalent length of the fittings for the drag reducing polymer solutions is many times longer than that for Newtonian fluids due to the increase of the loss coefficient and the decrease of the friction factor. It is speculated that the solid-like behavior of the polymer solutions in the abruptly changing folw passage plays a significant role in increasing the loss coefficient.

NUMERICAL STUDY ON HYDRODYNAMIC LUBRICATION CHARACTERISTICS OF MICRO-DIMPLE TEXTURED SURFACES (미세 딤플 가공 표면의 수력학적 윤활특성에 대한 수치해석 연구)

  • Hong, S.H.;Lee, J.B.;Cho, M.H.;Lee, S.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.363-367
    • /
    • 2009
  • Recently, the manufacturing of micro-cavity by means of laser surface texturing (LST) technique and low friction study by the LST have been in great progress. Most of current works have been dealing with the effect of cavity on friction and wear. The main objective of the present study was to investigate numerically two-dimensional lubrication characteristics of micro-dimple shapes fabricated on solid surfaces, and this study utilized the commercial CFD code (Fluent V.6.3). For the evaluation, preliminary simulation was conducted and numerical predictions were compared with the analytic solution obtained from the Reynolds's equation. Mainly, the present study investigated the influence of dimple depth, pattern shapes, and film thickness on lubrication characteristics related to the reduction of friction. It is found that the existence of micro-dimpled surface makes it possible to substantially reduce the friction forces exerted on the surfaces. In particular, substantial decrease in shear stresses was observed as the lubricant film thickness decreases. For instance, in the case of the film thickness of 0.01 mm, the estimated shear stress decreases up to about 40%. It indicates that the film thickness would be important factor in designing the micro-dimpled surfaces. Furthermore, it was observed that such a optimum dimple depth would be present because the dimple depth larger than the optimum value did no longer affect the reduction in shear stresses.

  • PDF

Earthquake Response of Mid-rise to High-rise Buildings with Friction Dampers

  • Kaur, Naveet;Matsagar, V.A.;Nagpal, A.K.
    • International Journal of High-Rise Buildings
    • /
    • v.1 no.4
    • /
    • pp.311-332
    • /
    • 2012
  • Earthquake response of mid-rise to high-rise buildings provided with friction dampers is investigated. The steel buildings are modelled as shear-type structures and the investigation involved modelling of the structures of varying heights ranging from five storeys to twenty storeys, in steps of five storeys, subjected to real earthquake ground motions. Three basic types of structures considered in the study are: moment resisting frame (MRF), braced frame (BF), and friction damper frame (FDF). Mathematical modelling of the friction dampers involved simulation of the two distinct phases namely, the stick phase and the slip phase. Dynamic time history analyses are carried out to study the variation of the top floor acceleration, top floor displacement, storey shear, and base-shear. Further, energy plots are obtained to investigate the energy dissipation by the friction dampers. It is seen that substantial earthquake response reduction is achieved with the provision of the friction dampers in the mid-rise and high-rise buildings. The provision of the friction dampers always reduces the base-shear. It is also seen from the fast Fourier transform (FFT) of the top floor acceleration that there is substantial reduction in the peak response; however, the higher frequency content in the response has increased. For the structures considered, the top floor displacements are lesser in the FDF than in the MRF; however, the top floor displacements are marginally larger in the FDF than in the BF.

Experimental Study of Friction Pendulum System to Improve the Seismic Capacity of Transformer (변압기의 내진성능 향상을 위한 마찰진자 면진장치의 시험 연구)

  • Jang, Jung-Bum;Kim, Jeong-Ki;Hwang, Kyeong-Min;Ham, Kyung-Won;Park, Jin-Wan;Lee, Chan-Wook
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.2
    • /
    • pp.1-8
    • /
    • 2008
  • Friction pendulum system is developed to prevent the damage of transformer, which is the most important among the electric power facilities, due to the earthquake and its seismic capacity is verified through the shaking table test. The applicability of friction pendulum system is confirmed as test results of compressive capacity test and friction test. Especially, as a result of shaking table test with a large scale transformer model, friction pendulum system gives to the reduction of maximum response acceleration by 30% at anchorage of transformer and 59% at the top of porcelain bushing comparing with the existing anchorage type. In addition to the reduction of maximum response acceleration, natural frequency of transformer is shifted to long period due to the friction pendulum system. In case that friction pendulum system is applied to the transformer, the damage of transformer can be prevented effectively under the earthquake.