• Title/Summary/Keyword: Reducing Carbon

Search Result 906, Processing Time 0.025 seconds

Research on Innovation Technologies for Zero Carbon: Carbon Dioxide Reduction in Construction and Concrete Industries (탄소 제로화를 위한 혁신 기술 연구: 건설 및 콘크리트 산업에서의 이산화탄소 저감 방안 동향)

  • Kim, Joo-Hyun;Park, Jung-Jun;Kim, Jong-Kyu
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.4_2
    • /
    • pp.549-563
    • /
    • 2022
  • Continuous global warming is causing ecosystem destruction and direct damage to human life. The main cause of global warming is greenhouse gases, which account for more than 90 % of carbon dioxide. The leaders of each country signed the Paris Agreement at the United Nations Convention on Climate Change (UNFCCC) to reduce greenhouse gas emissions. Currently, the total amount of CO2 emitted from South Korea is 664.7 million tons as of 2018, ranking eighth in the world. 37 % of South Korea's total CO2 emissions come from the construction & building field, especially the cement production, which is a construction material. Carbon reduction technologies can be largely divided into four types: carbon reduction (CC), carbon reduction and storage technology (CCS), carbon reduction and utilization technology (CCU), and carbon reduction, storage and utilization technology (CCUS). Overseas, CCUS technology is mainly applied to reduce and store CO2 emitted from construction and construction field. A technology for permanently storing CO2 through mineralization by capturing CO2 and utilizing CO2 into a cement production process was developed, and this technology is applied to the entire cement industry. However, the development of CCUS technology applicable to the cement industry is still insignificant in South Korea. In this study, carbon dioxide reduction technology and methods for reducing carbon dioxide emitted during the cement manufacturing process, which is the main component of concrete mainly used in civil engineering construction, were investigated. Overseas, it has reached the commercialization stage beyond the demonstration stage as a way to reduce carbon dioxide by vomiting carbonation reactions. Accordingly, if carbon dioxide reduction plan technology generated during cement manufacturing is developed based on domestic technology differentiated from foreign technology, it is expected to contribute one more step to the carbon neutrality policy.

Recent Research Trends of Catalytic Conversion of CO2 to High-value Chemicals (촉매 전환을 이용한 이산화탄소의 고부가 가치제품 생산에 대한 최근 연구 동향)

  • Song, Ki-Hun;Ryu, Jun-hyung;Chung, Jong-Sik
    • Korean Chemical Engineering Research
    • /
    • v.47 no.5
    • /
    • pp.519-530
    • /
    • 2009
  • Reducing the emission of carbon dioxide, which is the main contributor to the green house effect, is becoming a global hot issue. Great attention has been thus given to utilization of carbon dioxide rather than just capturing and isolating it because it could convert carbon dioxide to high-value chemicals. In this paper, recent research trends are investigated on the catalytic conversion of carbon dioxide to syngas in the context of $CH_4$, dry-reforming, trireforming, and the electro-catalytic conversion of carbon dioxide through SOFC(Solid Oxide Fuel Cell) system. Research trends for utilizing syngas to high-value-added useful products, mainly fuel such as DME(Dimethyl Ether) are also discussed.

Numerical Analysis of Heat Transfer and Fabrication of Carbon Material for Heat Dissipation in Solar Panel (태양광 패널 적용 방열용 탄소소재의 제조 및 열전달 수치해석)

  • Park, Hun-Su;Kang, Chul-Hee;Kim, Hong-Gun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.12
    • /
    • pp.82-90
    • /
    • 2019
  • This analysis demonstrates the effective removal of heat generated from a solar panel's output degradation factor solar cells (the solar panel's output deterioration factor), and solves the problems of oxidation and corrosion in existing metal heat sinks. The heat-dissipating test specimen was prepared using carbon materials; then, its thermal conductivity and its effectiveness in reducing temperatures were studied using heat transfer numerical analysis. As a result, the test specimen of the 30g/㎡ basis weight containing 80% of carbon fiber impregnated with carbon ink showed the highest thermal conductivity 6.96 W/(m K). This is because the surface that directly contacted the solar panel had almost no pores, and the conduction of heat to the panels appeared to be active. In addition, a large surface area was exposed to the atmosphere, which is considered advantageous in heat dissipation. Finally, numerical analysis confirmed the temperature reduction effectiveness of 2.18℃ in a solar panel and 1.08℃ in a solar cell, depending on the application of heat dissipating materials.

Tribological Properties of Carbon black added Acrylonitrile-butadiene Rubber

  • Cho, Kyung-Hoon;Lee, Yang-Bok;Lim, Dae-Soon
    • Korean Journal of Materials Research
    • /
    • v.17 no.11
    • /
    • pp.601-605
    • /
    • 2007
  • The tribological properties of acrylonitrile-butadiene rubber (NBR) filled with two kinds of carbon black filler were examined. Different types of Semi-Reinforcing Furnace (SRF), and High Abrasion Furnace (HAF) blacks were used as filler material to test the influence of carbon black particle size on the friction and wear of NBR. Results from tribological tests using a ball on disk method showed that the smaller HAF particles were more effective for reducing the wear of NBR during frictional sliding. The hardness, elastic modulus at 100% elongation, and elongation at break were measured to examine the correlation between the effects of carbon black on the mechanical and tribological properties of the NBR specimens. The wear tracks of the NBR specimens were observed with scanning electron microscopy (SEM). The wear tracks for NBR with different ratios of SRF and HAF showed clearly different abrasion patterns. Mechanisms for the friction and wear behavior of NBR with different sizes of carbon black filler were proposed using evidence from wear track observation, as well as the mechanical and tribological test results.

Two Decades of International Climate Negotiations - Carbon Budget Allocation Approach to Re-shaping Developing Country Strategies

  • Yedla, Sudhakar;Garg, Sandhya
    • East Asian Economic Review
    • /
    • v.18 no.3
    • /
    • pp.277-299
    • /
    • 2014
  • Climate negotiations have been going on for the last two decades and the awareness for impacts of climate change has improved substantially. However, the trends of global $CO_2$ emissions did not reveal any encouraging signs, with developing countries emitting even more $CO_2$ and industrialized nations showing no signs of reducing emissions to below their 1990 levels. In order to meet the ambitious targets set by the Stern report for the next two decades, it is important to find new and path-breaking approaches to climate change. This paper attempts to analyze the use of carbon/development space historically, at present and in the future with a focus on equity. Trends analysis focuses on the last two decades (Post Rio) and the carbon budget based analysis considers a period of 1850-2050. Industrialized countries are found to have significantly overshot their budgeted allocation for the last 160 years. Both the developing and industrialized countries are overshooting the present budget estimates based on world per capita budget for the next forty years and proportional to the population of each country. It is important for the industrialized countries to bring down their emissions to meet their carbon budgets while the developing countries use their development space as a guideline for their development path. Furthermore, this paper presents aggressive and regressive scenarios for the industrialized countries to compensate for the climate debt they have created.

Investigation of thorium separation from rare-earth extraction residue via electrosorption with carbon based electrode toward reducing waste volume

  • Aziman, Eli Syafiqah;Ismail, Aznan Fazli;Muttalib, Nabilla Abdul;Hanifah, Muhammad Syafiq
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.2926-2936
    • /
    • 2021
  • Rare-earth (RE) industries generate a massive amount of radioactive residue containing high thorium concentrations. Due to the fact that thorium is considered a non-economic element, large volume of these RE processed residues are commonly disposed of without treatment. It is essential to study an appropriate treatment that could reduce the volume of waste for final disposition. To this end, this research investigates the applicability of carbon-based adsorbent in separating thorium from aqueous phase sulphate is obtained from the cracking and leaching process of solid rare-earth by-product residue. Adsorption of thorium from the aqueous phase sulphate by carbon-based electrodes was investigated through electrosorption experiments conducted at a duration of 180 minutes with a positive potential variable range of +0.2V to +0.6V (vs. Ag/AgCl). Through this research, the specific capacity obtained was equivalent to 1.0 to 5.14 mg-Th/g-Carbon. Furthermore, electrosorption of thorium ions from aqueous phase sulphate is found to be most favorable at a higher positive potential of +0.6V (vs. Ag/AgCl). This study's findings elucidate the removal of thorium from the rare-earth residue by carbon-based electrodes and simultaneously its potential to reduce disposal waste of untreated residue.

Removal of iron oxide scale from boiler feed-water in thermal power plant by high gradient magnetic separation: field experiment

  • Akiyama, Yoko;Li, Suqin;Akiyama, Koshiro;Mori, Tatsuya;Okada, Hidehiko;Hirota, Noriyuki;Yamaji, Tsuyoshi;Matsuura, Hideki;Namba, Seitoku;Sekine, Tomokazu;Mishima, Fumihito;Nishijima, Shigehiro
    • Progress in Superconductivity and Cryogenics
    • /
    • v.23 no.3
    • /
    • pp.14-19
    • /
    • 2021
  • The reduction of carbon dioxide emissions becomes a global issue, the main source of carbon dioxide emissions in the Asian region is the energy conversion sector, especially coal-fired power plants. We are working to develop technologies that will at least limit the increase in carbon dioxide emissions from the thermal power plants as one way to reduce carbon dioxide emissions. Our research aims to reduce carbon dioxide emissions by removing iron oxide scale from the feedwater system of thermal power plants using a superconducting high-gradient magnetic separation (HGMS) system, thereby reducing the loss of power generation efficiency. In this paper, the background of thermal power plants in Asia is outlined, followed by a case study of the introduction of a chemical cleaning line at an actual thermal power plant in Japan, and the possibility of introducing it into the thermal power plants in China based on the results.

A Study on the Utilization Status and Corrosion Damage with Ammonia Characteristics (암모니아의 특성에 따른 활용 현황과 부식 손상에 대한 고찰)

  • Seung-Jun Lee
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.2
    • /
    • pp.125-136
    • /
    • 2023
  • Recently, ammonia has emerged as an alternative energy source that can reduce carbon emissions in various industries. Ammonia is used as a fuel in internal combustion engines because it contains no carbon in its components and does not emit any carbon when burned. It is also used in various fields such as fertilizer production, refrigeration, cleaning and disinfection, and drug manufacturing due to its unique characteristics, such as high volatility and easy solubility in water. However, it is highly corrosive to metals and is a toxic gas that can pose a risk to human health, so caution must be exercised when using it. In particular, stress corrosion cracking may occur in containers or manufacturing facilities made of carbon-manganese steel or nickel steel, so special care is needed. As ammonia has emerged as an alternative fuel for reducing carbon emissions, there is a need for a rapid response. Therefore, based on a deep understanding of the causes and mechanisms of ammonia corrosion, it is important to develop new corrosion inhibitors, improve corrosion monitoring and prediction systems, and study corrosion prevention design.

Carbon Literacy on Education in Connection with SDGs of the Pre-service Earth Science Teachers (SDGs 연계 교육에서 예비 지구과학 교사들의 탄소 소양)

  • Kim, Yunji
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.14 no.3
    • /
    • pp.292-301
    • /
    • 2021
  • This study is a basic research to apply ESD linked to SDGs to pre-service teachers majoring in earth science education. The purpose of this study is to evaluate carbon literacy by analyzing the awareness, attitude and knowledge, subjective norms, and behavioral control of the carbon footprint internalized by pre-service teachers. Pre-service teachers recognize the carbon footprint as their responsibility, but are not willing to pay the cost and accept inconveniences of the actions to reduce carbon footprint. They also support actions to reduce carbon footprint, but do not demand the actions from others. While they have sufficient knowledge about carbon mitigation actions, their conception of causes and effects of global warming is unstable. Pre-service teachers will go out to school sites and teach millions of students about global warming. It is essential to educate these teachers on the economic cost and social responsibility of reducing their carbon footprints. It is also important to find ways to bridge the gap between their thought and action. It is hoped that this study on pre-service teachers' carbon literacy will lead to realizing ESD.

Characterization of Shrinkage Reducing Type Cement Carbon Dioxide-reducible CSA Synthesis (이산화탄소 저감형 CSA합성을 통한 수축저감형 시멘트의 특성 평가)

  • Cho, Yong-Kwang;Nam, Seong-Young;Kim, Chun-Sik;Cho, Sung-Hyun;Lee, Hyoung-Woo;Ahn, Ji-Whan
    • Journal of Energy Engineering
    • /
    • v.28 no.1
    • /
    • pp.17-21
    • /
    • 2019
  • Calcium sulfaluminate (CSA) was synthesized to improve the shrinkage of OPC. In this study, the setting time, the compressive strength and the length change ratio were confirmed by replacing the synthesized CSA with OPC by 10% and 13% by 16%. In the case of shrinkage-reducing type cement, formation of Ca-Al-$H_2$-based hydrate was activated. Therefore, the setting time was shortened. The compressive strength of the shrinkage - reducing type cement is comparable to that of OPC after 7 days' strength. However, shrinkage reducing type cement showed improved initial strength compared to OPC. The length change ratio was found to be improved by drying shrinkage from -0.075% to -0.047% on the 28th day.