• Title/Summary/Keyword: Reduced integration

Search Result 486, Processing Time 0.024 seconds

The Expressions of Vector Gravity and Gravity Gradient Tensor due to an Elliptical Cylinder (타원 기둥에 의한 벡터 중력 및 중력 변화율 텐서 반응식)

  • Hyoungrea Rim
    • Geophysics and Geophysical Exploration
    • /
    • v.26 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • This study derives the expressions of vector gravity and gravity gradient tensor due to an elliptical cylinder. The vector gravity for an arbitrary three-dimensional (3D) body is obtained by differentiating the gravitational potential, including the triple integral, according to the shape of the body in each axis direction. The vector gravity of the 3D body with axial symmetry is integrated along the axial direction and reduced to a double integral. The complex Green's theorem using complex conjugates subsequently converts the double integral into a one-dimensional (1D) closed-line integral. Finally, the vector gravity due to the elliptical cylinder is derived using 1D numerical integration by parameterizing a boundary of the elliptical cross-section as a closed line. Similarly, the gravity gradient tensor due to the elliptical cylinder is second-order differentiated from the gravitational potential, including the triple integral, and integrated along the vertical axis direction reducing it to a double integral. Consequently, all the components of the gravity gradient tensor due to an elliptical cylinder are derived using complex Green's theorem as used in the case of vector gravity.

Formulation and evaluation a finite element model for free vibration and buckling behaviours of functionally graded porous (FGP) beams

  • Abdelhak Mesbah;Zakaria Belabed;Khaled Amara;Abdelouahed Tounsi;Abdelmoumen A. Bousahla;Fouad Bourada
    • Structural Engineering and Mechanics
    • /
    • v.86 no.3
    • /
    • pp.291-309
    • /
    • 2023
  • This paper addresses the finite element modeling of functionally graded porous (FGP) beams for free vibration and buckling behaviour cases. The formulated finite element is based on simple and efficient higher order shear deformation theory. The key feature of this formulation is that it deals with Euler-Bernoulli beam theory with only three unknowns without requiring any shear correction factor. In fact, the presented two-noded beam element has three degrees of freedom per node, and the discrete model guarantees the interelement continuity by using both C0 and C1 continuities for the displacement field and its first derivative shape functions, respectively. The weak form of the governing equations is obtained from the Hamilton principle of FGP beams to generate the elementary stiffness, geometric, and mass matrices. By deploying the isoparametric coordinate system, the derived elementary matrices are computed using the Gauss quadrature rule. To overcome the shear-locking phenomenon, the reduced integration technique is used for the shear strain energy. Furthermore, the effect of porosity distribution patterns on the free vibration and buckling behaviours of porous functionally graded beams in various parameters is investigated. The obtained results extend and improve those predicted previously by alternative existing theories, in which significant parameters such as material distribution, geometrical configuration, boundary conditions, and porosity distributions are considered and discussed in detailed numerical comparisons. Determining the impacts of these parameters on natural frequencies and critical buckling loads play an essential role in the manufacturing process of such materials and their related mechanical modeling in aerospace, nuclear, civil, and other structures.

3D Printing in Modular Construction: Opportunities and Challenges

  • Li, Mingkai;Li, Dezhi;Zhang, Jiansong;Cheng, Jack C.P.;Gan, Vincent J.L.
    • International conference on construction engineering and project management
    • /
    • 2020.12a
    • /
    • pp.75-84
    • /
    • 2020
  • Modular construction is a construction method whereby prefabricated volumetric units are produced in a factory and are installed on site to form a building block. The construction productivity can be substantially improved by the manufacturing and assembly of standardized modular units. 3D printing is a computer-controlled fabrication method first adopted in the manufacturing industry and was utilized for the automated construction of small-scale houses in recent years. Implementing 3D printing in the fabrication of modular units brings huge benefits to modular construction, including increased customization, lower material waste, and reduced labor work. Such implementation also benefits the large-scale and wider adoption of 3D printing in engineering practice. However, a critical issue for 3D printed modules is the loading capacity, particularly in response to horizontal forces like wind load, which requires a deeper understanding of the building structure behavior and the design of load-bearing modules. Therefore, this paper presents the state-of-the-art literature concerning recent achievement in 3D printing for buildings, followed by discussion on the opportunities and challenges for examining 3D printing in modular construction. Promising 3D printing techniques are critically reviewed and discussed with regard to their advantages and limitations in construction. The appropriate structural form needs to be determined at the design stage, taking into consideration the overall building structural behavior, site environmental conditions (e.g., wind), and load-carrying capacity of the 3D printed modules. Detailed finite element modelling of the entire modular buildings needs to be conducted to verify the structural performance, considering the code-stipulated lateral drift, strength criteria, and other design requirements. Moreover, integration of building information modelling (BIM) method is beneficial for generating the material and geometric details of the 3D printed modules, which can then be utilized for the fabrication.

  • PDF

Research on the Performance Optimization of HR-Net for Spinal Region Segmentation in Whole Spine X-ray Images (Whole Spine X-ray 영상에서 척추 영역 분할을 위한 HR-Net 성능 최적화에 관한 연구)

  • Han Beom Yu;Ho Seong Hwang;Dong Hyun Kim;Hee Jue Oh;Ho Chul Kim
    • Journal of Biomedical Engineering Research
    • /
    • v.45 no.4
    • /
    • pp.139-147
    • /
    • 2024
  • This study enhances AI algorithms for extracting spinal regions from Whole Spine X-rays, aiming for higher accuracy while minimizing learning and detection times. Whole Spine X-rays, critical for diagnosing conditions such as scoliosis and kyphosis, necessitate precise differentiation of spinal contours. The conventional manual methodology encounters challenge due to the overlap of anatomical structures, prompting the integration of AI to overcome these limitations and enhance diagnostic precision. In this study, 1204 AP and 500 LAT Whole Spine X-ray images were meticulously labeled, spanning the third cervical to the fifth lumbar vertebrae. We based our efforts on the HR-Net algorithm, which exhibited the highest accuracy, and proceeded to simplify its network architecture and enhance the block structure for optimization. The optimized HR-Net algorithm demonstrates an improvement, increasing accuracy by 2.98% for the AP dataset and 1.59% for the LAT dataset compared to its original formulation. Additionally, the modification resulted in a substantial reduction in learning time by 70.06% for AP images and 68.43% for LAT images, along with a decrease in detection time by 47.18% for AP and 43.07% for LAT images. The time taken per image for detection was also reduced by 47.09% for AP and 43.07% for LAT images. We suggest that the application of the proposed HR-Net in this study can lead to more accurate and efficient extraction of spinal regions in Whole Spine X-ray images. This can become a crucial tool for medical professionals in the diagnosis and treatment of spinal-related conditions, and it will serve as a foundation for future research aimed at further improving the accuracy and speed of spinal region segmentation.

Analysis of Performance, Energy-efficiency and Temperature for 3D Multi-core Processors according to Floorplan Methods (플로어플랜 기법에 따른 3차원 멀티코어 프로세서의 성능, 전력효율성, 온도 분석)

  • Choi, Hong-Jun;Son, Dong-Oh;Kim, Jong-Myon;Kim, Cheol-Hong
    • The KIPS Transactions:PartA
    • /
    • v.17A no.6
    • /
    • pp.265-274
    • /
    • 2010
  • As the process technology scales down and integration densities continue to increase, interconnection has become one of the most important factors in performance of recent multi-core processors. Recently, to reduce the delay due to interconnection, 3D architecture has been adopted in designing multi-core processors. In 3D multi-core processors, multiple cores are stacked vertically and each core on different layers are connected by direct vertical TSVs(through-silicon vias). Compared to 2D multi-core architecture, 3D multi-core architecture reduces wire length significantly, leading to decreased interconnection delay and lower power consumption. Despite the benefits mentioned above, 3D design technique cannot be practical without proper solutions for hotspots due to high temperature. In this paper, we propose three floorplan schemes for reducing the peak temperature in 3D multi-core processors. According to our simulation results, the proposed floorplan schemes are expected to mitigate the thermal problems of 3D multi-core processors efficiently, resulting in improved reliability. Moreover, processor performance improves by reducing the performance degradation due to DTM techniques. Power consumption also can be reduced by decreased temperature and reduced execution time.

Analysis on the Temperature of 3D Multi-core Processors according to Vertical Placement of Core and L2 Cache (코어와 L2 캐쉬의 수직적 배치 관계에 따른 3차원 멀티코어 프로세서의 온도 분석)

  • Son, Dong-Oh;Ahn, Jin-Woo;Park, Jae-Hyung;Kim, Jong-Myon;Kim, Cheol-Hong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.6
    • /
    • pp.1-10
    • /
    • 2011
  • In designing multi-core processors, interconnection delay is one of the major constraints in performance improvement. To solve this problem, the 3-dimensional integration technology has been adopted in designing multi-core processors. The 3D multi-core architecture can reduce the physical wire length by stacking cores vertically, leading to reduced interconnection delay and reduced power consumption. However, the power density of 3D multi-core architecture is increased significantly compared to the traditional 2D multi-core architecture, resulting in the increased temperature of the processor. In this paper, the floorplan methods which change the forms of vertical placement of the core and the level-2 cache are analyzed to solve the thermal problems in 3D multi-core processors. According to the experimental results, it is an effective way to reduce the temperature in the processor that the core and the level-2 cache are stacked adjacently. Compared to the floorplan where cores are stacked adjacently to each other, the floorplan where the core is stacked adjacently to the level-2 cache can reduce the temperature by 22% in the case of 4-layers, and by 13% in the case of 2-layers.

Typhoon Simulation with a Parameterized Sea Surface Cooling (모수화된 해면 냉각을 활용한 태풍 모의 실험)

  • Lee, Duho;Kwon, H. Joe;Won, Seong-Hee;Park, Seon Ki
    • Atmosphere
    • /
    • v.16 no.2
    • /
    • pp.97-110
    • /
    • 2006
  • This study investigates the response of a typhoon model to the change of the sea surface temperature (SST) throughout the model integration. The SST change is parameterized as a formulae of which the magnitude is given as a function of not only the intensity and the size but the moving speed of tropical cyclone. The formulae is constructed by referring to many previous observational and numerical studies on the SST cooling with the passage of tropical cyclones. Since the parameterized cooling formulae is based on the mathematical expression, the resemblance between the prescribed SST cooling and the observed one during the period of the numerical experiment is not complete nor satisfactory. The agreements between the prescribed and the observed SST even over the swath of the typhoon passage differ from case to case. Numerical experiments are undertaken with and without prescribing the SST cooling. The results with the SST cooling do not show clear evidence in improving the track prediction compared to those of the without-experiments. SST cooling in the model shows its swath along the incomplete simulated track so that the magnitude and the distribution of the sea surface cooling does not resemble completely with the observed one. However, we have observed a little improvement in the intensity prediction in terms of the central pressure of the tropical cyclone in some cases. In case where the model without the SST treatment is not able to yield a correct prediction of the filling of the tropical cyclone especially in the decaying stage, the pulling effect given by the SST cooling alleviates the over-deepening of the model so that the central pressure approaches toward the observed value. However, the opposite case when the SST treatment makes the prediction worse may also be possible. In general when the sea surface temperature is reduced, the amount of the sensible and the latent heat from the ocean surface become also reduced, which results in the weakening of the storms comparing to the constant SST case. It turns out to be the case also in our experiments. The weakening is realized in the central pressure, maximum wind, horizontal temperature gradient, etc.

Nonlinearity Compensation of Electroabsorption Modulator by using Semiconductor Optical Amplifier (반도체 광증폭기를 이용한 전계흡수 광변조기 비선형성 보상)

  • Lee, Chang-Hyeon;Son, Seong-Il;Han, Sang-Guk
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.5
    • /
    • pp.23-30
    • /
    • 2000
  • To compensate the nonlinearity of electroabsorption modulator(EAM) resulting from its near exponential transfer function, a semiconductor optical amplifier(SOA) that has a log transfer function is used. Since the transfer function of SOA is inverse to that of EAM, the intermodulation distortion(IMD) of EAM can be reduced by cascading SOA to EAM. Also, the RF gain can be increased by the optical gain of SOA. For these reasons, spurious free dynamic range(SFDR) of EAM is enhanced by connecting SOA to EAM in series and operating in gain salutation region. To improve the nonlinearity compensation of EAM, the increased gain of SOA is required and the slope of gain saturation, the ratio of gain to input SOA power, needs to be steep. However, signal spontaneous beat noise that is the dominant system noise increases in proportion to the gain such that the SFDR of EAM is reduced. The higher the gain of SOA is, the more ASE is increased. Thus the noise level of system is increased and the following SFDR of EAM is decreased. The slope of gain saturation region and ASE of have trade-off relation and the optimization is achieved at 8㏈ optical gain. 9㏈ enhancement of SFDR of EAM is obtained. This scheme is easy to embody the linear EAM and the integration with three components (DFB-LD, EAM and SOA) offers many merits, such as low insertion loss, low chirping and low polarization sensitivity.

  • PDF

Photoelastic Stress Analysis of Fixed Partial Dentures (가공의치(架工義齒)에 작용(作用)하는 Stress에 관(關)한 광탄성학적(光彈性學的) 분석(分析))

  • Cho, Won-Haeng
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.18 no.1
    • /
    • pp.15-35
    • /
    • 1980
  • The purpose of this study was to investigate stresses in the various components of fixed partial dentures restoring the posterior teeth of the lower jaw, and to measure quantitatively the effects of certain modifications in structural design on the stresses in the restorations using two-dimensional photoelasticity. Two-dimensional photoelastic methods were used in this study. Several models of fixed partial dentures were constructed. Shoulder less margins and anatomic occlusal reduction were incorporated in Model 1. Rounded shoulders and flat occlusal reduction were incorporated in Model 2, while Model 3 was a cantilever fixed partial denture. Other similar fixed partial dentures were constructed with V and U notches deliverately included in the region of the fixed joints for comparative reasons. The birefringent materials used in this study were PSM-1 and PSM-5 in standard sheets. PSM-1 was used for constructing the substructure, and PSM-5 was used in making the components of the fixed partial dentures. The two materials were used in the construction of composite photoelastic models. Improved artificial stone was used to represent dental cement in luting the composite photoelastic models. Static loading procedures were used at preplanned sites to represent occlusal loads in the mouth. 35 mm color and B/W film were used to record isochromatics in accordance with photoelastic procedures. Data reduction was performed using the grid method, which helped in, the mathematical integration procedure (Shear difference method) to separate the principal stresses. The results were as follows. 1. Fixed partial dentures do not function in bending as a symmetrical beam. Alternate areas of tension and compression were demonstrated when multiple contact loading was used. 2. The weakest part in posterior fixed partial dentures is the fixed joint. 3. (1) Models I and modified Model I were loaded on the pontic using a 50 pound vertical static load. The shear stress near the posterior fixed joint in Model 1 (U notches) was+129.4 p.s.i., and at the same fixed joint in modified Model 1 (V notches) was+239.4 p.s.i. The concentration of stress in fixed joint was reduced by 50% when U notches replaced the V notches. (2) Modified Model 2 was loaded using a multiple contact loader at a total load of 125 pounds. The difference between the principal stresses (${\sigma}_1-{\sigma}_2$), shear stress, at the V notches was+600 p.s.i., and at the U notches was+3l7 p.s.i. The shear stress was reduced by 50% when U notches replaced the V notches. V-grooves at the fixed joints should be avoided, and should be replaced by regular shaped U-grooves. 4. Cantilever fixed partial dentures had much higher stresses at the fixed joint than fixed partial dentures that were attached at both ends.

  • PDF

Application of Remote Sensing Technology for Developing REDD+ Monitoring Systems (REDD+ 모니터링 시스템 구축을 위한 원격탐사기술의 활용방안)

  • Park, Taejin;Lee, Woo-Kyun;Jung, Raesun;Kim, Moon-Il;Kwon, Tae-Hyub
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.3
    • /
    • pp.315-326
    • /
    • 2011
  • In recent years, domestic and international interests focus on climate change, and importance of forest as carbon sink have been also increased. Particularly REDD+ mechanism expanded from REDD (Reduced Emissions from Deforestation and Degradation) is expected to perform a new mechanism for reducing greenhouse gas in post 2012. To conduct this mechanism, countries which try to get a carbon credit have to certify effectiveness of their activities by MRV (Measuring, Reporting and Verification) system. This study analyzed the approaches for detecting land cover change and estimating carbon stock by remote sensing technology which is considered as the effective method to develop MRV system. The most appropriate remote sensing for detection of land cover change is optical medium resolution sensors and satellite SAR (Synthetic Aperture Radar) according to cost efficiency and uncertainty assessment. In case of estimating carbon stock, integration of low uncertainty techniques, airborne LiDAR (Light Detection and Ranging), SAR, and cost efficient techniques, optical medium resolution sensors and satellite SAR, could be more appropriate. However, due to absence of certificate authority, guideline, and standard of uncertainty, we should pay continuously our attention on international information flow and establish appropriate methods. Moreover, to apply monitoring system to developing countries, close collaboration and monitoring method reflected characteristics of each countries should be considered.