DOI QR코드

DOI QR Code

Application of Remote Sensing Technology for Developing REDD+ Monitoring Systems

REDD+ 모니터링 시스템 구축을 위한 원격탐사기술의 활용방안

  • Park, Taejin (Department of Environmental Science and Ecological Engineering, Korea University) ;
  • Lee, Woo-Kyun (Department of Environmental Science and Ecological Engineering, Korea University) ;
  • Jung, Raesun (Department of Environmental Science and Ecological Engineering, Korea University) ;
  • Kim, Moon-Il (Department of Environmental Science and Ecological Engineering, Korea University) ;
  • Kwon, Tae-Hyub (Department of Environmental Science and Ecological Engineering, Korea University)
  • 박태진 (고려대학교 환경생태공학부) ;
  • 이우균 (고려대학교 환경생태공학부) ;
  • 정래선 (고려대학교 환경생태공학부) ;
  • 김문일 (고려대학교 환경생태공학부) ;
  • 권태협 (고려대학교 환경생태공학부)
  • Received : 2011.02.28
  • Accepted : 2011.07.06
  • Published : 2011.09.30

Abstract

In recent years, domestic and international interests focus on climate change, and importance of forest as carbon sink have been also increased. Particularly REDD+ mechanism expanded from REDD (Reduced Emissions from Deforestation and Degradation) is expected to perform a new mechanism for reducing greenhouse gas in post 2012. To conduct this mechanism, countries which try to get a carbon credit have to certify effectiveness of their activities by MRV (Measuring, Reporting and Verification) system. This study analyzed the approaches for detecting land cover change and estimating carbon stock by remote sensing technology which is considered as the effective method to develop MRV system. The most appropriate remote sensing for detection of land cover change is optical medium resolution sensors and satellite SAR (Synthetic Aperture Radar) according to cost efficiency and uncertainty assessment. In case of estimating carbon stock, integration of low uncertainty techniques, airborne LiDAR (Light Detection and Ranging), SAR, and cost efficient techniques, optical medium resolution sensors and satellite SAR, could be more appropriate. However, due to absence of certificate authority, guideline, and standard of uncertainty, we should pay continuously our attention on international information flow and establish appropriate methods. Moreover, to apply monitoring system to developing countries, close collaboration and monitoring method reflected characteristics of each countries should be considered.

최근 기후변화와 관련하여 국내를 비롯한 국제적인 관심이 증폭되고 있으며, 이러한 시대적인 흐름 속에 탄소흡수원으로서의 산림의 중요성이 부각되고 있다. 특히, 산림전용 및 황폐화 방지를 통한 온실가스감축(Reduced Emissions from Deforestation and Degradation, REDD) 및 산림탄소축적보존 및 증진, 지속가능한 산림경영을 포함하는 REDD+가 post-2012에 이행될 신규 메커니즘으로 활용될 전망이다. 메커니즘의 이행을 위해서는 기본적으로 MRV(Measuring, Reporting and Verification) 시스템을 통해 메커니즘 적용 효과를 인증 받아야 한다. 본 연구에서는 가장 효율적인 모니터링 방법 중 하나로 인정받고 있는 다양한 원격탐사기술의 토지피복변화 탐지 및 탄소축적량 추정하는 방법 및 효과를 비용 및 기술(불확실성)측면에서 분석하였다. 그 결과 토지피복변화탐지를 위해서는 중해상도 광학영상 및 위성 탑재 SAR(Synthetic Aperture Radar)가 가장 적합한 원격탐사자료로 도출되었다. 그리고 탄소축적량 추정에 있어서는, 항공기 탑재 LiDAR(Light Detection and Ranging), SAR와 같이 불확실성이 낮은 기술과 비용효율적인 기술인 중해상도 광학영상, 위성 탑재 SAR 간의 통합을 통해 효율적인 결과를 도출할 수 있음을 확인할 수 있었다. 하지만, 아직까지 본 메커니즘에 대한 명확한 인증기관, 가이드라인 및 불확실성에 대한 기준이 결정 되지 않고 있으므로, 추후 지속적인 관심을 통해 국제적인 흐름을 파악하고, 적합한 방법론을 구축해야 한다. 뿐만 아니라 개발된 메커니즘을 대상 개도국에 활용하기 위해서는 긴밀한 국제협력관계 구축 및 대상국에 적합한 모니터링 방법 또한 고려해야 할 필요성이 있다.

Keywords

References

  1. 산림청. 2009. 기후변화와 산림. 산림청
  2. 석현덕, 윤범석. 2010. 기후변화협약 REDD+ 메커니즘의 이해와 향후 협상전망. 한국농촌경제연구원.
  3. 장현숙. 2010. 칸쿤 기후변회회의 결과 및 시사점. Trade Focus 9(63): 1-13.
  4. Achard, F., Defries, R., Eva, H., Hansen, M., Mayaux, P. and Stibig, H.J. 2007 Pan-tropical monitoring of deforestation. Environmental Research Letters. 2.
  5. Achard, F., DeFries, R., Herold, M., Mollicone, D., Pandey, D. and Souza, C. 2008. Guidance on monitoring of gross changes in forest area'. Chapter 3 in GOFC-GOLD Reducing greenhouse gas emissions from deforestation and degradation in developing countries: a sourcebook of methods and procedures for monitoring, measuring and reporting. GOFC-GOLD Report version COP13-2. GOFCGOLD Project Office, Natural Resources Canada, Alberta, Canada.
  6. Asner, G.P., Knapp, D.E., Broadbent, E. Oliveira, P., Keller, M. and Silva, J. 2005. Selective logging in the Brazilian Amazon. Science 310: 480-482. https://doi.org/10.1126/science.1118051
  7. Baker, J.C. and Williamson, R.A. 2006. Satellite imagery activism: Sharpening the focus on tropical deforestation 27: 4-14 https://doi.org/10.1111/j.1467-9493.2006.00236.x
  8. Balzter, H. 2001. Forest mapping and monitoring with interferometric synthetic aperture radar(InSAR). Progress in Physical Geography 25: 159-177.
  9. Bottcher, H., Eisbrenner, K., Fritz1, S., Kindermann, G., Kraxner, F., McCallum, I. and Obersteiner, M. 2009. An assessment of monitoring requirements and costs of Reduced Emissions from Deforestation and Degradation. Carbon Balance and Management. 1-14.
  10. Bird, A.C., Taylor, J.C. and Brewer, T.R. 2000. Mapping national park landscape from ground, air and space. International Journal of Remote Sensing 21: 2719-2736. https://doi.org/10.1080/01431160050110250
  11. Bortolot, Z.J. and Wynne, R.H. 2005. Estimating forest biomass using small footprint lidar data: An individual tree-based approach that incorporates training data. ISPRS Journal of Photogrammetry and Remote Sensing 59(6): 342-360. https://doi.org/10.1016/j.isprsjprs.2005.07.001
  12. Brockhaus, J.A. and Khorram, S. 1992. A comparison of Spot and Landsat-TM data for use in conducting inventories of forest resources. International Journal of Remote Sensing 13: 3035-3043. https://doi.org/10.1080/01431169208904100
  13. Brown, S. and Braatz, B. 2008. Methods for estimating CO2 emissions from deforestation and forest degradation. Chapter 5 In: GOFC-GOLD. Reducing greenhouse gas emissions from deforestation and degradation in developing countries: a sourcebook of methods and procedures for monitoring, measuring and reporting. GOFCGOLD Report version COP 13-2. GOFC-GOLD Project Office, Natural Resources Canada, Alberta, Canada.
  14. Center for International Forestry Research(CIFOR). 2008. Moving Ahead with REDD Issues, Options and Implications.
  15. Clemencon, R. 2008. The Bali Road Map. The Journal of Environment & Development 17(1): 1-70.
  16. Coops, N.C., Waring, R.H. and Landsberg, J.J. 1998. Assessing forest productivity in Australia and New Zealand using a physiologically-based model driven with averaged monthly weather data and satellite-derived estimates of canopy photosynthetic capacity. Forest Ecology and Management 104: 113-127. https://doi.org/10.1016/S0378-1127(97)00248-X
  17. De Fries, R., Achard, F., Brown, S., Herold, M., Murdiyarso, D., Schlamadinger, B. and Souza, C.D. 2006. Reducing Greenhouse Gas Emissions from Deforestation in Developing Countries: Considerations for Monitoring and Measuring, Report of the Global Terrestrial Observing System(GTOS) number 46, GOFC-GOLD report 26, available: www.fao.org/gtos/pubs.html, 23.
  18. DeFries, R., Achard, F., Brown, S., Herold, M., Murdiyarso, D., Schlamadinger, B. and Souza, C. 2007. Earth observations for estimating greenhouse gas emissions from deforestation in developing countries. Environmental Science and Policy 10: 385-394. https://doi.org/10.1016/j.envsci.2007.01.010
  19. Dobson, M.C., Ulaby, F.T. and Pierce, L.E. 1995. Landcover classification and estimation of terrain attributes using synthetic-aperture radar. Remote Sensing of Environment 51: 199-214. https://doi.org/10.1016/0034-4257(94)00075-X
  20. Drake, J.B., Knox, R.G., Dubnayaah, R.O., Clark, D.B., Condit, R., Blair, J.B. and Hofton, M. 2003. Above-ground biomass estimation in closed canopy neotropical forests using lidar remote sensimg: factors affeeting the generality of relationships. Global Ecology and Biogeography 12(2): 147-159. https://doi.org/10.1046/j.1466-822X.2003.00010.x
  21. Food and Agricultural Organization(FAO). 2005. Global Forest Resources Assessment 2005: Progress Towards Sustainable Forest Management. FAO Forestry Paper 147. Food and Agriculture Organization of the United Nations, Rome.
  22. Fazakas, Z., Nilsson, M. and Olsson, H. 1999. Regional forest biomass and wood volume estimation using satellite data and ancillary data. Agriculture and Forest Meteorology 98: 417-425.
  23. Fuller, R.M., Groom, G.B. and Jones, A.R. 1994. The land-cover map of Great-Britain-ian automated classification of Landsat Thematic Mapper data. Photogrammetric Engineering & Remote Sensing 60: 553-562.
  24. Gibbs, H.K., Brown, S., Niles, J.O. and Foley, J.A. 2007. Monitoring and estimating forest carbon stocks : making REDD a reality. Environmental Resource Letters 2. IOP Publishing Ltd., UK. Available online at: http://www.iop.org/EJ/article/1748-9326/2/4/045023/erl7_4_045023.html.
  25. Global Observation of Forest and Land Cover Dynamics( GOFC-GOLD), 2008, Reducing greenhouse gas emissions from deforestation and degradation in developing countries: a sourcebook of methods and procedures for monitoring, measuring and reporting, GOFC-GOLD Report version COP13-2, (GOFC-GOLD Project Office, Natural Resources Canada, Alberta, Canada.
  26. Global Observation of Forest and Land Cover Dynamics (GOFC-GOLD), 2009. A sourcebook of methods and procedures for monitoring and reporting anghropogenic greenhouse gas emissions and removals caused by deforestation, gains and losses of carbon stocks in forests remaining forests, and forestation. GOFC-GOLD Project Office, Natural Resources Canada, Alberta, Canada.
  27. Grainger, A., Boucher, D.H., Frumhoff, P.C., Laurance, W. F., Lovejoy, T., McNeely, J., Niekisch, M., Raven, P., Sodhi, N.S., Ventner, O. and Pimm, S.L. 2009. Biodiversity and REDD at Copenhagen. Current Biology 19: 974-976. https://doi.org/10.1016/j.cub.2009.10.001
  28. Hansen, M.C., Roy, D.P., Lindquist, E., Adusei, B., Justice, C.O. and Altstatt, A. 2008. A method for integrating MODIS and Landsat data for systematic monitoring of forest cover and change in the Congo Basin. Remote Sensing of Environment 112: 2495-2513. https://doi.org/10.1016/j.rse.2007.11.012
  29. Hare, W.L. 2009. A safe landing for the Climate. State of the World - Into a Warming World. Chapter 2. Worldwatch Institute. www.worldwatch.org/files/pdf/SOW09_chap2.pdf.
  30. Hoekman, D.H. and Quinones, M.J. 2000. Land cover type and biomass classification using AirSAR data for evaluation of monitoring scenarios in the Colombian Amazon. IEEE Transactions on Geoscience and Remote Sensing 38: 685-696. https://doi.org/10.1109/36.841998
  31. Hofmann, P. 2001. Detecting Buildings and Roads from IKONOS-2 Data Using Additional Elevation Information. GeoBIT/GIS: Journal of Spatial Information. Decision Making 6: 28-33.
  32. Houghton, R.A. 2005. Tropical deforestation as a source of greenhouse gas emissions Tropical Deforestation and Climate Changeed Mutinho and Schwartzman.
  33. Intergovernmental Panel on Climate Change(IPCC). 2001. Climate Change 2001: The Scientific Basis, Cambridge University Press, Cambridge, U.K.
  34. Intergovernmental Panel on Climate Change(IPCC). 2007. Climate Change 2007: Synthesis Report. Intergovernmental Panel on Climate Change Fourth Assessment Report. Cambridge University Press, Cambridge, U.K.
  35. Kasischke, E.S., Melack, J.M. and Dobson, M.C. 1997. The use of imaging radars for ecological applications-a review. Remote Sensing of Environment 59: 141-156. https://doi.org/10.1016/S0034-4257(96)00148-4
  36. Kim, S.R., Kwak, D.A., Lee, W.K., Son, Y., Bae, S.W., Kim, C. and Yoo, S. 2010. Estimation of carbon storage based on individual tree detection in Pinus densiflora stands using a fusion of aerial photography and LiDAR data. Science China 53(7): 885-897. https://doi.org/10.1007/s11427-010-4017-1
  37. Kwak, D.A., Lee, W.K., Cho, H.K., Lee, S.H., Son, Y., Kafatos, M. and Kim, S.R. 2010. Estimating stem volume and biomass of Pinus koraiensis using LiDAR data. Journal of Plant Reserch.
  38. Lee, J.S., Cloude, S.R., Papathanassiou, K.P., Grunes, M.R. and Woodhouse, I.H. 2003. Speckle filtering and coherence estimation of polarimetric SAR interferometry data for forest applications. IEEE Transactions on Geoscience and Remote Sensing 41(10): 2254-2263. https://doi.org/10.1109/TGRS.2003.817196
  39. Lim, K., Treitz, P., Baldwin, K., Morrison, I. and Green, J. 2003. Lidar remote sensing of biophysical properties of tolerant northern hardwood forests. Canadian Journal of Remote Sensing 29(5): 658-678. https://doi.org/10.5589/m03-025
  40. Lim, K. and Treitz, P. 2004. Estimation of above ground forest biomass from airborne discrete return laser scanner data using canopy-based quantile estimators. Scandinavian Journal of Forest Research. 19(6): 558-570. https://doi.org/10.1080/02827580410019490
  41. Limp, W.F. 2002. Quick-Take Review of eCognition. Geoworld 0204: 53-54.
  42. Luckman, A., Baker, J., Honzak, M. and Lucas, R. 1998. Tropical forest biomass density estimation using JERS-1 SAR: seasonal variation, confidence limit, and application to image mosaics. Remote Sensing of Environment 63: 126-139. https://doi.org/10.1016/S0034-4257(97)00133-8
  43. Naesset, E. 1997. Determination of mean tree height of forest stands using airborne laser scanner data. ISPRS Journal of Photogrammetry and Remote Sensing 52: 49-56. https://doi.org/10.1016/S0924-2716(97)83000-6
  44. Naesset, E. 2004. Estimation of above- and below-ground carbon in boreal forest ecosystems. Proceedings of the ISPRS working group VIII/2International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXVI, Part 8/W2. 145-148.
  45. Nelson, R., Short, A. and Valenti, M. 2005. Measuring biomass and carbon in delaware using an airborne profiling lidar. Scandinavian Journal of Forest Research 19(6): 500-511.
  46. Nilsson, M. 1996. Estimation of tree heights and stand volume using an airborne lidar system. Remote Sensing of Environment 56: 1-7. https://doi.org/10.1016/0034-4257(95)00224-3
  47. Patenaude, G., Milne, R. and Dawson. T.P. 2005. Synthesis of remote sensing approaches for forest carbon estimation : reporting to the Kyoto Protocol. Environmental Science & Policy 8: 161-178. https://doi.org/10.1016/j.envsci.2004.12.010
  48. Popescu, S.C. and Wynne, R.H. 2003. Seeing the trees in the forest: using lidar and multispectral data fusion with local filtering and variable window size for estimating tree height. Photogrammetric Engineering & Remote Sensing 589-604.
  49. Popescu, S.C. 2007. Estimating biomass of individual pine trees using airborne lidar. Biomass & Bioenergy 31(9): 646-655. https://doi.org/10.1016/j.biombioe.2007.06.022
  50. Ranson, K.J., Saatchi, S. and Sun, G.Q. 1995. Boreal forest ecosystem characterization with SIR-C/X-SAR. IEEE Transactions on Geoscience and Remote Sensing 33: 867-876. https://doi.org/10.1109/36.406673
  51. Rosenqvist, A., Milne, A., Lucas, R., Imhoff, M. and Dobsone, C. 2003. A review of remote sensing technology in support of the Kyoto Protocol. Environmental Science & Policy 6: 441-455. https://doi.org/10.1016/S1462-9011(03)00070-4
  52. Saatchi, S.S., Soares, J.V. and Alves, D.S. 1997. Mapping Amazon Deforestation and Land Use in Amazon Rainforest by Using SIR-C Imagery. Remote Sensing of Environment 59: 191-202. https://doi.org/10.1016/S0034-4257(96)00153-8
  53. Saatchi, S.S., Alvala, R.C., Nelson, B. and Yifan, Y. 2007a. Spatial variation in forest structure and aboveground biomass in the southwestern Brazilian Amazon. Forest Ecology and Management.
  54. Saatchi, S.S., Houghton, R.A., Alvala, R.C., Soares, A. and Yu, Y. 2007b. Distribution of aboveground live biomass in the Amazon basin. Global Change Biology 13: 816-837. https://doi.org/10.1111/j.1365-2486.2007.01323.x
  55. Sgrenzaroli, M., Eva, H. and Achard, F. 2000. Assessment of 100 m resolution L-band radar mosaics for regional forest change detection on lowland tropical forests of South America. Remote Sensing and Forest Monitoring. 208-215.
  56. Stern, N. 2006. The Economics of Climate Change. Cambridge University Press. 712.
  57. Trotter, C.M., Dymond, J.R. and Goulding, C.J. 1997. Estimation of timber volume in a coniferous plantation forest using Landsat TM. International Journal of Remote Sensing 18: 2209-2223. https://doi.org/10.1080/014311697217846
  58. United Nations Framework Convention on Climate Change (UNFCCC): 2001, Report of the Conference of the Parties on its Seventh Session, Held at Marrakesh from 29 October to 10 November 2001, FCCC/CP/2001/13/Add. 2, (The Marrakech Accords), http://unfccc.int/resource/docs/cop7/13a02.pdf.
  59. Walker, W.S., Kellndorfer, J.M., LaPoint, E., Hoppus, M. and Westfall, J. 2007. An empirical InSAR-optical fusion approach to mapping vegetation canopy height. Remote Sensing of. Environment 109: 482-499. https://doi.org/10.1016/j.rse.2007.02.001
  60. Walker, W.S., Stickler, C.M., Kellndorfer, J.M., Kirsch, K.M. and Nepstad, D.C. 2010. Large-Area Classification and Mapping of Forest and Land Cover in the Brazilian Amazon: A Comparative Analysis of ALOS/PALSAR and Landsat Data Sources. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 3(4): 594-604.
  61. Woodcock, C.E., Macomber, S.A., Pax-Lenney, M. and Cohen, W.B. 2001. Monitoring large areas for forest change using Landsat: generalization across space, time and Landsat sensors. Remote Sensing of Environment 78: 194-203. https://doi.org/10.1016/S0034-4257(01)00259-0
  62. Woodhouse, I.H., Cloude, S., Papathanassiou, K., Hope, J., Suarez, J., Osborne, P. and Wright, G. 2002. Polarimetric interferometry in the Glen Affric project: Results and conclusions. In Proceedings of the IGARSS, Toronto, ON, Canada, June 2002.
  63. Woodhouse, I.H., Cloude, S., Papathanassiou, K., Hope, J., Suarez, J., Osborne, P. and Wright, G. 2002. Polarimetric interferometry in the Glen Affric project: Results and conclusions. In Proceedings of the IGARSS, Toronto, ON, Canada, June 2002.