• Title/Summary/Keyword: Reduced graphene oxide (rGO)

Search Result 55, Processing Time 0.02 seconds

Research on Physicochemical Properties of Graphene Oxide (GO) and Reduced Graphene Oxide (R-GO) (그래핀 옥사이드(Graphen Oxide, GO)와 환원 그래핀의 (Reduced graphe oxide, R-GO)의 물리화학적 특성 연구)

  • Moo-Sun Kim;Ho-Yong Lee;Sung-Woong Choi
    • Composites Research
    • /
    • v.36 no.3
    • /
    • pp.167-172
    • /
    • 2023
  • The manufacturing technology of composite material is applicable with filler characteristics maintaining low cost, flexibility, and easy process to develope the various functional composite materials. To realize functional composites, various researches on the high performance of composite materials using graphene as a filler is being actively conducted. In this study, physical and chemical properties were investigated using graphene to improve high functional properties. Graphene oxide (GO) was prepared using graphane nanoplatelet (GNP), and reduced graphene oxide (R-GO) was formed by reducing GO. The physical properties of GO and R-GO were analyzed, and the reliability of the manufactured method was reviewed by comparing that of GNP results. As a result of analysis by Raman spectroscopy, in the case of R-GO, it was confirmed that the intensity of D-peak and G-peak decreased compared to GO, and an increase of 0.08 was observed through the ratio of ID/IG. For the FTIR results, GO and RGO has a repeating C-C and C=C connection structure unlike GNP. GO and R-GO show clear peaks for C-O bond, C=C bond, C=O bond, and O-H bonding. As a result of X-ray diffraction analysis, GNP showed a wide diffraction peak at 25.86° of (002) plane characteristics, whereas GO and R-GO showed peaks corresponding to (001) and (100) planes. It was also found that the interlayer distance of GO increased by about 2.6 times compared to GNP.

Study on properties of eco-friendly reduction agents for the reduced graphene oxide method

  • Na, Young-il;Song, Young Il;Kim, Sun Woo;Suh, Su-Jeong
    • Carbon letters
    • /
    • v.24
    • /
    • pp.1-9
    • /
    • 2017
  • We studied the basic properties and fabrication of reduced graphene oxide (rGO) prepared using eco-friendly reduction agents in the graphene solution process. Hydrazine is generally used to reduce graphene oxide (GO), which results in polluting emissions as well as fixed nitrogen functional groups on different defects in the graphene sheets. To replace hydrazine, we developed eco-friendly reduction agents with similar or better reducing properties, and selected of them for further analysis. In this study, GO layers were produced from graphite flakes using a modified Hummer's method, and rGO layers were reduced using hydrazine hydrate, L-ascorbic acid, and gluconic acid. We measured the particle sizes and the dispersion stabilities in the rGO dispersed solvents for the three agents and analyzed the structural, electrical, and optical properties of the rGO films. The results showed that the degree of reduction was in the order L-ascorbic acid ${\geq}$ hydrazine > glucose. GO reduced using L-ascorbic acid had a sheet resistance of $121k{\Omega}/sq$, while that reduced using gluconic acid showed worse electrical properties than the other two reduction agents. Therefore, L-ascorbic acid is the most suitable eco-friendly reduction agent that can be substituted for hydrazine.

Reduced Graphene Oxide Field-effect Transistor as a Transducer for Ion Sensing Application

  • Nguyen, T.N.T.;Tien, Nguyen Thanh;Trung, Tran Quang;Lee, N.E.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.562-562
    • /
    • 2012
  • Recently, graphene and graphene-based materials such as graphene oxide (GO) or reduced graphene oxide (R-GO) draws a great attention for electronic devices due to their structures of one atomic layer of carbon hexagon that have excellent mechanical, electrical, thermal, optical properties and very high specific surface area that can be high potential for chemical functionalization. R-GO is a promising candidate because it can be prepared with low-cost from solution process by chemical oxidation and exfoliation using strong acids and oxidants to produce graphene oxide (GO) and its subsequent reduction. R-GO has been used as semiconductor or conductor materials as well as sensing layer for bio-molecules or ions. In this work, reduced graphene oxide field-effect transistor (R-GO FET) has been fabricated with ITO extended gate structure that has sensing area on ITO extended gate part. R-GO FET device was encapsulated by tetratetracontane (TTC) layer using thermal evaporation. A thermal annealing process was carried out at $140^{\circ}C$ for 4 hours in the same thermal vacuum chamber to remove defects in R-GO film before deposition of TTC at $50^{\circ}C$ with thickness of 200 nm. As a result of this process, R-GO FET device has a very high stability and durability for months to serve as a transducer for sensing applications.

  • PDF

Isogeometric analysis of FG polymer nanocomposite plates reinforced with reduced graphene oxide using MCST

  • Farzam, Amir;Hassani, Behrooz
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.1
    • /
    • pp.69-93
    • /
    • 2022
  • Reduced graphene oxide (rGO) is one of the derivatives of graphene, which has drawn some experimental research interests in recent years however, numerical research studying the mechanical behaviors of composites made of rGO has not been taken into consideration yet. The objective of this research is to investigate the buckling, and free vibration of functionally graded reduced graphene oxide reinforced nanocomposite (FG rGORC) plates employing isogeometric analysis (IGA). The effective Young's modulus of rGORC is determined based onthe Halpin-Tsai model. Four different FG distribution types of rGO are considered varying across plate thickness. Besides, the refined plate theory is used based on Reddy's third-order function. To capture the size effect, modified couple stress theory (MCST) is employed. A comprehensive study is provided examining the effect of various parameters including rGO weight fraction, FG distribution types, boundary conditions, material length scale parameter, etc. Our obtained results show that the addition of only 1% of uniformly distributed rGO into epoxy plates leads to the fundamental frequency and critical buckling load 18% and 39% higher than those of pure epoxy plates, respectively.

Synthesis of Platinum-Reduced Graphene Oxide (Pt-rGO) Nanocomposite for Selective Detection of Hydrogen Peroxide as a Peroxidase-Mimic Catalyst

  • Doyun Park;Min Young Cho;Kuan Soo Shin
    • Journal of the Korean Chemical Society
    • /
    • v.67 no.6
    • /
    • pp.415-419
    • /
    • 2023
  • In this study, we report the one-pot synthesis of reduced graphene oxide (rGO) containing platinum nanoparticles with catalytic activity to break down hydrogen peroxide as a peroxidase-mimicking catalyst. A single reducing agent was used to reduce graphene oxide and a platinum precursor at a moderately low temperature of 70℃. The rGO was homogeneously decorated with platinum nanoparticles. The catalytic activity of Pt-rGO was investigated for the oxidation of 3,3',5,5'- tetramethylbenzidine (TMB), a peroxidase substrate, in the presence of hydrogen peroxide. The Pt-rGO coupled with glucose oxidase was also able to detect glucose at millimolar concentrations (up to 1 mM). Our results show that the Pt-rGO composite is a promising catalyst for the detection of hydrogen peroxide. This method was also applied for the detection of glucose.

Synthesis of Nitrogen-Doped Graphene by Thermal Annealing of Graphene Oxide with Melamine Compounds (멜라민 화합물을 이용한 산화 그래핀 도핑 및 특성 평가)

  • Kim, Sumin;Kim, Hyun;Kim, So Yang;Han, Jong Hun
    • Korean Journal of Materials Research
    • /
    • v.29 no.11
    • /
    • pp.677-683
    • /
    • 2019
  • In this paper, nitrogen-doped reduced graphene oxide(rGO) is obtained by thermal annealing of nitrogen-containing compounds and graphene oxide (GO) manufactured by modified Hummers' method. We use melamine as a nitrogen-containing compound and treat GO thermally with melamine at over $800{\sim}1,000^{\circ}C$ and 1 ~ 3 hr under Ar atmosphere. The electrical conductivity of doped rGO is measured by 4-point probe method. As a result, nitrogen contents on rGO are found to be in the range of 2.5 to 12.5 at% depending on the doping conditions after thermal annealing. The main doping site on graphene oxide is changed from pyridinic-N and pyrrolinic N to the graphitic site as the heat treatment temperature increases. The electrical conductivity of doped rGO increases as the N doping content increases. As the thermal treatment time increases, the change of both total doping contents and doping sites is slight and the surface resistance is remarkably reduced, which is caused by healing effects of doped graphene oxide at high temperature.

Layer-by-layer assembled graphene oxide films and barrier properties of thermally reduced graphene oxide membranes

  • Kim, Seon-Guk;Park, Ok-Kyung;Lee, Joong Hee;Ku, Bon-Cheol
    • Carbon letters
    • /
    • v.14 no.4
    • /
    • pp.247-250
    • /
    • 2013
  • In this study, we present a facile method of fabricating graphene oxide (GO) films on the surface of polyimide (PI) via layer-by-layer (LBL) assembly of charged GO. The positively charged amino-phenyl functionalized GO (APGO) is alternatively complexed with the negatively charged GO through an electrostatic LBL assembly process. Furthermore, we investigated the water vapor transmission rate and oxygen transmission rate of the prepared (reduced GO $[rGO]/rAPGO)_{10}$ deposited PI film (rGO/rAPGO/PI) and pure PI film. The water vapor transmission rate of the GO and APGO-coated PI composite film was increased due to the intrinsically hydrophilic property of the charged composite films. However, the oxygen transmission rate was decreased from 220 to 78 $cm^3/m^2{\cdot}day{\cdot}atm$, due to the barrier effect of the graphene films on the PI surface. Since the proposed method allows for large-scale production of graphene films, it is considered to have potential for utilization in various applications.

Removal of NOx from Graphene based Photocatalyst Ceramic Filter (그래핀 기반 광촉매 담지 세라믹필터에서 질소산화물(NOx)의 제거)

  • Kim, Yong-Seok;Kim, Young-Ho
    • Applied Chemistry for Engineering
    • /
    • v.33 no.6
    • /
    • pp.600-605
    • /
    • 2022
  • In this study, nitrogen oxide (NOx) removal experiments were performed using a graphene based ceramic filter coated with a V2O5-WO3-TiO2 catalyst. Graphene oxide (GO) was prepared by Hummer's method using graphite, and the reduced graphene oxide was produced by reducing with hydrazine (N2H4). Vanadium (V), Tungsten (W), and Titanium (Ti) were coated by the sol-gel method, and then a metal oxide-supported filter was prepared through a calcination process at 350 ℃. A NOx removal efficiency test was performed for the catalytic ceramic filters with UV light in a humid condition. When graphene oxide (GO) and reduced graphene oxide (rGO) were present on the filter, the NOx removal efficiency was superior to that of the conventional ceramic filter. Most likely, this is due to an improvement in the adsorption properties of NOx molecules on graphene coated surfaces. As the concentration of graphene increased, higher NOx removal efficiency was confirmed.

Electrical and Photo-Response Properties of Reduced Graphene Oxide Field-Effect Transistor (Reduced graphene oxide를 이용한 전계효과 트랜지스터의 광전기적 특성)

  • Lee, Dae-Yeong;Min, Mi-Suk;Ra, Chang-Ho;Lee, Hyo-Yeong;Yu, Won-Jong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.235-235
    • /
    • 2012
  • Reduced graphene oxide (rGO) 물질을 사용하여 전계효과 트랜지스터를 제작하였고 이의 광전기적 특성을 펄스 레이저와 진공 저온 측정을 통하여 분석하였다. 이를 통하여 rGO 소자의 광소자로써의 이용 가능성에 대하여 고찰하였다.

  • PDF

Evaluation of Electrochemical Characteristics on Graphene Coated Austenitic and Martensitic Stainless Steels for Metallic Bipolar Plates in PEMFC Fabricated with Hydrazine Reduction Methods (하이드라진으로 환원시킨 그래핀을 코팅한 오스테나이트와 마르텐사이트 스테인리스 강 고체고분자형 연료전지 금속 분리판의 전기화학적 특성 평가)

  • Cha, Seong-Yun;Lee, Jae-Bong
    • Corrosion Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.92-107
    • /
    • 2016
  • Graphene was coated on austenitic and martensitic stainless steels to simulate the metallic bipolar plate of proton exchange membrane fuel cell (PEMFC). Graphene oxide (GO) was synthesized and was reduced to reduced graphene oxide (rGO) via a hydrazine process. rGO was confirmed by FE-SEM, Raman spectroscopy and XPS. Interfacial contact resistance (ICR) between the bipolar plate and the gas diffusion layer (GDL) was measured to confirm the electrical conductivity. Both ICR and corrosion current density decreased on graphene coated stainless steels. Corrosion resistance was also improved with immersion time in cathodic environments and satisfied the criteria of the Department of Energy (DOE), USA. The total concentrations of metal ions dissolved from graphene coated stainless steels were reduced. Furthermore hydrophobicity was improved by increasing the contact angle.