DOI QR코드

DOI QR Code

Removal of NOx from Graphene based Photocatalyst Ceramic Filter

그래핀 기반 광촉매 담지 세라믹필터에서 질소산화물(NOx)의 제거

  • Kim, Yong-Seok (Department of Food Biotechnology and Chemical Engineering, Hankyong National University) ;
  • Kim, Young-Ho (Department of Food Biotechnology and Chemical Engineering, Hankyong National University)
  • 김용석 (한경대학교 식품생명화학공학부 화학공학전공) ;
  • 김영호 (한경대학교 식품생명화학공학부 화학공학전공)
  • Received : 2022.10.19
  • Accepted : 2022.11.21
  • Published : 2022.12.10

Abstract

In this study, nitrogen oxide (NOx) removal experiments were performed using a graphene based ceramic filter coated with a V2O5-WO3-TiO2 catalyst. Graphene oxide (GO) was prepared by Hummer's method using graphite, and the reduced graphene oxide was produced by reducing with hydrazine (N2H4). Vanadium (V), Tungsten (W), and Titanium (Ti) were coated by the sol-gel method, and then a metal oxide-supported filter was prepared through a calcination process at 350 ℃. A NOx removal efficiency test was performed for the catalytic ceramic filters with UV light in a humid condition. When graphene oxide (GO) and reduced graphene oxide (rGO) were present on the filter, the NOx removal efficiency was superior to that of the conventional ceramic filter. Most likely, this is due to an improvement in the adsorption properties of NOx molecules on graphene coated surfaces. As the concentration of graphene increased, higher NOx removal efficiency was confirmed.

V2O5-WO3-TiO2 촉매를 담지하여 그래핀(graphene) 기반 세라믹필터를 제조하였으며, 이를 활용하여 질소산화물(NOx)의 제거실험을 수행하였다. 산화그래핀(graphene oxide, GO)은 흑연(graphite)을 이용하여 Hummer's method에 의해 제조하였고 환원제로 히드라진(N2H4)을 통해 환원 산화그래핀(reduced graphene oxide, rGO)을 제조하였다. 제조된 그래핀을 세라믹필터 표면에 유-무기 하이브리드 원리를 이용하여 코팅하였으며, 여기에 광촉매물질을 담지하였다. 광촉매물질은 바나듐(V), 텅스텐(W), 티타늄(Ti)를 사용하여 sol-gel법에 의해 코팅 후 350 ℃ 소성 공정을 통하여 광촉매담지 세라믹필터를 제조하였다. UV광을 제조된 필터에 조사하여 NOx의 제거 실험을 수행하였으며, NOx의 제거 효율은 기존의 세라믹필터보다 GO 및 rGO가 코팅된 경우가 우수하였다. 이는 코팅된 그래핀에 의한 흡착성의 향상 때문으로 판단되며, 그래핀의 농도가 증가함에 따라 보다 높은 NOx의 제거효율을 확인하였다.

Keywords

References

  1. H. R. Anderson, R. W. Atkinson, S. A. Bremner, and L. Marston, Particulate air pollution and hospital admissions for cardiorespiratory diseases: Are the elderly at greater risk?, Eur. Respir. J., 21, 39s-46s (2003). https://doi.org/10.1183/09031936.03.00402203
  2. H. R. Anderson, Air pollution and mortality: A history, Atmospheric Environ., 43, 142-152 (2009). https://doi.org/10.1016/j.atmosenv.2008.09.026
  3. Y. P. Kim, Research and policy directions against ambient fine particles, J. Korean Soc. Atmos. Environ., 33, 191-204 (2017). https://doi.org/10.5572/KOSAE.2017.33.3.191
  4. M. Kim, H. Kim, and J. Park, Empirical NOx removal analysis of photocatalytic construction materials at real-scale, Materials, 14, 5717 (2021). https://doi.org/10.3390/ma14195717
  5. J. Huang, C. Zhou, X. Lee, Y. Bao, X. Zhao, J. Fung, A. Richter, X. Liu, and Y. Zheng, The effects of rapid urbanization on the levels in tropospheric nitrogen dioxide and ozone over East China, Atmospheric Environ., 77, 558-567 (2013). https://doi.org/10.1016/j.atmosenv.2013.05.030
  6. B. H. Jeong, J. H. Song, and J. D. Chung, Evaluation of SNCR performance on NOx removal by different injection points of reductant in a coal-fired CFBC boiler, J. Korea Soc. Waste Manage., 37, 133-140 (2020). https://doi.org/10.9786/kswm.2020.37.2.133
  7. B. R. Jeong, H. S. Lee, E. S. Kim, and H. D. Kim, De-NOx evalution of SCR catalysts adding vanadium-graphene nanocomposite, J. Korean Cryst. Growth Cryst. Technol., 25, 252-256 (2015). https://doi.org/10.6111/JKCGCT.2015.25.6.252
  8. J. H. Park, J. J. Park, H. J. Park, and K. B. Yi, Investigation on the preparation method of TiO2-mayenite for NOx Removal, Clean Technol., 26, 304-310 (2020). https://doi.org/10.7464/KSCT.2020.26.4.304
  9. G. Williams, B. Seger, and P. V. Kamt, TiO2-graphene nanocomposites uv-assisted photocatalytic reduction of graphene oxide, ACS Nano, 2, 1487-1491 (2008). https://doi.org/10.1021/nn800251f
  10. C. Prasad, Q. Liu, H. Tang, G. Yuvaraja, J. Long, A. Rammohan, and G. V. Zyryanov, An overview of graphene oxide supported semiconductors based photocatalysts: Properties, synthesis and photocatalytic applications, J. Mol. Liq., 297, 111826 (2020). https://doi.org/10.1016/j.molliq.2019.111826
  11. Y. S. Han, H. J. Kim, and J. K. Park, Characteristics of NOx reducing using V2O5-TiO2 catalyst coated on ceramic foam filter, J. Korean Soc. Atmos. Environ., 20, 773-781 (2004).
  12. M. Kim, The characteristics of Mn-TiO2 catalyst for visible-light photocatalyst, Anal. Sci. Technol., 24, 493-502 (2011). https://doi.org/10.5806/AST.2011.24.6.493
  13. K. Y. Jeon, S. U. Son, C. J. Lee, G. Kim, and W. J. Kim, A study to improve photocatalysts for purification NOx, Architectural Institute of Korea, 28, 51-58 (2012).
  14. S. Pei and H. M. Cheng, The reduction of graphene oxide, Carbon, 50, 3210-3228 (2012). https://doi.org/10.1016/j.carbon.2011.11.010
  15. M. Yi and Z. Shen, A review on mechanical exfoliation for the scalable production of graphene, J. Mater. Chem. A, 3, 11700-11715 (2015). https://doi.org/10.1039/C5TA00252D
  16. W. S. Hummers and R. E. Offeman, Preparation of graphitic oxide, J. Am. Chem. Soc., 80, 1339-1339 (1958). https://doi.org/10.1021/ja01539a017
  17. A. K. Geim, Graphene: Status and prospects, Science, 324, 1530-1534 (2009). https://doi.org/10.1126/science.1158877
  18. F. Pendolino and N. Armata, Graphene Oxide in Environmental Remediation Process, 16-21, Springer, Berlin, Germany (2017).
  19. Y. Zhu, S. Murali, W. Cai, X. Li, W. S. Ji, J. R. Potts, and R. S. Ruoff, Graphene and graphene oxide: Synthesis, properties, and applications, Adv. Mater., 22, 3906-3924 (2010). https://doi.org/10.1002/adma.201001068
  20. O. C. Compton, D. A. Dikin, K. W. Putz, L. C. Brinson, and S. T. Nguyen, Electrically conductive 'alkylated' graphene paper via chemical reduction of amine-functionalized graphene oxide paper, Adv Mater., 22, 892-896 (2010). https://doi.org/10.1002/adma.200902069
  21. A. S. Mayorov, R. V. Gorbachev, S. V. Morozov, L. Britnell, R. Jalil, L. A. Ponomarenko, P. Blake, K. S. Novoselov, and K. Watanabe, Micrometer-scale ballistic transport in encapsulated graphene at room temperature, Nano Lett., 11, 2396-2399 (2011). https://doi.org/10.1021/nl200758b
  22. C. Lee, X. Wei, J. W. Kysar, and J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science, 321, 385-388 (2008). https://doi.org/10.1126/science.1157996
  23. M. M. Ballari, M. Hunger, and H. J. H. Brouwers, NOx photocatalytic degradation employing concrete pavement containing titanium dioxide, Appl. Catal. B:Environ., 95, 245-254 (2010). https://doi.org/10.1016/j.apcatb.2010.01.002
  24. M. Darvishi and J. S. Yazdi, Characterization and comparison of photocatalytic activities of prepared TiO2/graphene nanocomposites using titanium butoxide and TiO2 via microwave irradiation method, Mater. Res. Express, 3, 085601 (2016). https://doi.org/10.1088/2053-1591/3/8/085601
  25. J. H. Kim, J. H. Choi, and A. D. Phule, Development of high performance catalytic filter of V2O5-WO3/TiO2 supported-SiC for NOx reduction, Powder Technol.., 327, 282-290 (2018). https://doi.org/10.1016/j.powtec.2017.12.081
  26. S. Heidenreich, M. Nacken, M. Hackel, and G. Schaub, Catalytic filter elements for combined particle separation and nitrogen oxides removal from gas streams, Powder Technol., 180, 86-90 (2008). https://doi.org/10.1016/j.powtec.2007.02.033
  27. R. Wu, J. Jin, K. Li, L. Zhao, and H. Zhang, High-performance FeaTibOx catalyst loaded on ceramic filter for NOx reduction, Mater. Res. Express, 8, 045509 (2021). https://doi.org/10.1088/2053-1591/abfa48
  28. M. Kim, The characteristics of Mn-TiO2 catalyst for visible-light photocatalyst, Anal. Sci. Technol., 24, 493-502 (2011). https://doi.org/10.5806/AST.2011.24.6.493
  29. C. Zhang, D. M. Dabbs, L. M. Liu, L. A. Aksay, R. Car, and A. Selloni, Combined effects of functional groups, lattice defects, and edges in the infrared spectra of graphene oxide, J. Phys. Chem. C, 119, 18167-18176 (2015). https://doi.org/10.1021/acs.jpcc.5b02727