DOI QR코드

DOI QR Code

Evaluation of Electrochemical Characteristics on Graphene Coated Austenitic and Martensitic Stainless Steels for Metallic Bipolar Plates in PEMFC Fabricated with Hydrazine Reduction Methods

하이드라진으로 환원시킨 그래핀을 코팅한 오스테나이트와 마르텐사이트 스테인리스 강 고체고분자형 연료전지 금속 분리판의 전기화학적 특성 평가

  • Cha, Seong-Yun (School of Advanced Materials Engineering, Kookmin University) ;
  • Lee, Jae-Bong (School of Advanced Materials Engineering, Kookmin University)
  • 차성윤 (국민대학교 공과대학 신소재공학부) ;
  • 이재봉 (국민대학교 공과대학 신소재공학부)
  • Received : 2016.03.15
  • Accepted : 2016.04.21
  • Published : 2016.04.30

Abstract

Graphene was coated on austenitic and martensitic stainless steels to simulate the metallic bipolar plate of proton exchange membrane fuel cell (PEMFC). Graphene oxide (GO) was synthesized and was reduced to reduced graphene oxide (rGO) via a hydrazine process. rGO was confirmed by FE-SEM, Raman spectroscopy and XPS. Interfacial contact resistance (ICR) between the bipolar plate and the gas diffusion layer (GDL) was measured to confirm the electrical conductivity. Both ICR and corrosion current density decreased on graphene coated stainless steels. Corrosion resistance was also improved with immersion time in cathodic environments and satisfied the criteria of the Department of Energy (DOE), USA. The total concentrations of metal ions dissolved from graphene coated stainless steels were reduced. Furthermore hydrophobicity was improved by increasing the contact angle.

Keywords

References

  1. Y. Hung, K. M. El-Khatib and H. Tawfik, J. Power Sources, 163, 509 (2006). https://doi.org/10.1016/j.jpowsour.2006.09.013
  2. C.-U. Hong and Y. S. Kim, The KSFM Journal of Fluid Machinery, 9, 64 (2006).
  3. G. J. Jang, Y. M. Choi, B. K. Ahn and T. W. Lim, Trans. of the Korean Hydrogen and New Energy Society, 19, 266 (2008).
  4. H. Tawfik, Y. Hung and D. Mahajan, J. Power Sources, 163, 755 (2006).
  5. A. Hermann, T. Chaudhuri and P. Spagnol, Int. J. Hydrogen Energ., 30, 359 (2005).
  6. K. Kordesch and G. Simader, Fuel Cells and Their Applications, p. 6, John Wiley & Sons, New York (2006).
  7. E. A. Cho and I. H. Oh, polym. Sci. Tech., 15, 612 (2004).
  8. B. K. Kakati, D. Sathiyamoorthy and A. Verma, Int. J. Hydrogen Energ., 35, 4185 (2010). https://doi.org/10.1016/j.ijhydene.2010.02.033
  9. H. Wang, M.A. Sweikart, and J.A. Turner, J. Power Sources, 115, 243 (2003). https://doi.org/10.1016/S0378-7753(03)00023-5
  10. H. Wang, and J.A. Turner, J. Power Sources, 128, 193 (2004). https://doi.org/10.1016/j.jpowsour.2003.09.075
  11. K. M. Kim and K. Y. Kim, J. Power Sources, 173, 917 (2007). https://doi.org/10.1016/j.jpowsour.2007.08.047
  12. T. J. Fatima, J. W. Lee and W. G. Jung, J. Ind and Eng. Chem, 20, 2883 (2014). https://doi.org/10.1016/j.jiec.2013.11.022
  13. J. B. Lee, I. H. Oh, Corros. Sci. Tech., 12, 171 (2013). https://doi.org/10.14773/cst.2013.12.4.171
  14. S. Y. Cha and J. B. Lee, Corros. Sci. Tech., 13, 224 (2014). https://doi.org/10.14773/cst.2014.13.6.224
  15. P. G. Ren, D. X. Yan, X. Ji, T. Chen and Z. M. Li, Nanotechnology, 22, 055705 (2011). https://doi.org/10.1088/0957-4484/22/5/055705
  16. R. Rao, D. Tishler, J. Katoch and M. Ishigami, Phys. Rev. B, 84, 113406 (2011). https://doi.org/10.1103/PhysRevB.84.113406
  17. F. Tuinstra. J. Chem. Phys., 53, 1126 (1970). https://doi.org/10.1063/1.1674108
  18. D. S. Jang and J. J. Lee, J. Korean Inst. Surf. Eng., 48, 87 (2015). https://doi.org/10.5695/JKISE.2015.48.3.87
  19. M. Stern and A. L. Geary, J. Electrochem. Soc., 104, 56 (1957). https://doi.org/10.1149/1.2428496