• 제목/요약/키워드: Reduce the vibration

검색결과 2,054건 처리시간 0.025초

선박 국부구조의 공진응답 저감을 위한 동흡진기 최적 설계 방법 (Optimal Design Method of Dynamic Vibration Absorber to Reduce Resonant Vibration Response of Ship Local Structure)

  • 권혁;조대승
    • 대한조선학회논문집
    • /
    • 제59권3호
    • /
    • pp.134-140
    • /
    • 2022
  • Ship local structure sometimes experiences severe vibration due to the resonance with an excitation force generated by the propulsion system. In that case, the installation of dynamic vibration absorber such as Tuned Mass Damper (TMD) on the structure can be considered as an effective alternative countermeasure to reduce the troublesome vibration if structural modification or change of excitation frequencies is difficult. Meanwhile, the conventional optimal design method of TMD premises the target structure exposed on an excitation force without the constraint of its magnitude and frequency range. However, the frequencies of major ship excitation forces due to propulsion system are normally bounded and its magnitude is varied according to its operation speed. Hence, the optimal design of TMD to reduce the resonant vibration of ship local structure should be differently approached compared with the conventional ones. For the purpose, this paper proposes an optimal design method of TMD considering maximum frequency and magnitude variation of a target harmonic excitation component. It is done by both lowering the resonant response at the 1st natural frequency and locating the 2nd natural frequency over maximum excitation frequency for the idealized 2 degree of freedom system consisted of the structure and the TMD. For the validation of the proposed method, a numerical design case of TMD for a ship local structure exposed on resonant vibration due to a propeller excitation force is introduced and its performance is compared with the conventionally designed one.

반복되는 동하중에 의한 구조물 상부바닥 균열 감소를 위한 진동저감 연구 (A Study on How to Reduce Vibration in order to Decrease the Cracks that Form on the Upper Floor of a Structure due to Continuous Dynamic Loading)

  • 전종균;박삼진;박상곤;김도영
    • 한국산학기술학회논문지
    • /
    • 제12권4호
    • /
    • pp.1532-1538
    • /
    • 2011
  • 본 연구에서는 반복되는 동하중에 의한 구조물 상부바닥에 나타나는 균열에 대한 연구를 수행하였다. 물류 센터 상층 바닥슬라브에 균열발생 원인으로 의심되는 지게차의 진동이 향후 운영상에 문제가 되고 있다. 따라서 본 연구에서는 주요지점에서 지게차의 운행/적하차시 발생하는 진동을 측정 및 분석 하였다. 측정된 진동을 바탕으로 진동허용규제치와 비교분석한 결과, 허용규제치를 초과하는 과도진동으로 판명되어 구조적 균열의 원인을 규명하였다. 또한 측정 결과 값을 바탕으로 범용 유한요소모델링 및 해석을 통해 진동저감을 위한 영향성을 평가하였다. 이에 따른 대책방안을 제시하였으며, 대책 안 시공 후 진동저감효과를 검증할 수 있었다.

케이블댐퍼 감쇠성능의 수치해석적 연구 (Numerical Analysis Study on Damping Performance of Cable Damper)

  • 임성순
    • 복합신소재구조학회 논문집
    • /
    • 제6권2호
    • /
    • pp.97-104
    • /
    • 2015
  • Compared with a strong axial rigidity due to large intial tension, cable has a weak laterally flexural rigidity. A variety of dynamic loads such as traffic loads and wind loads etc. cause the cables to vibrate significantly and affect the mechanical properties and the performance of cables. Therefore, vibration reduction design is an urgent task to control the vibration of cable-supported bridges. Because a various kind of dampers have shown to reduce the amplitude and duration time of vibration of cable from measured date in field test, damper can be considered that it is effective device significantly to reduce the amplitude and duration time in vibration of cable. Vibration characteristics of cable can change according to manufacturing method and type of established form, and damper has been designed according to distribution of natural frequencies and vibration modes. In this study, numerical analysis is used to show the reduction effects of vibrations and present the design of damper for vibration reduction of cable.

The Noise Reduction of a DC Motor Using Multi-body Dynamics

  • Jung Il-Ho;Seo Jong-Hwi;Choi Sung-Jin;Park Tae-Won;Chai Jang-Bom
    • Journal of Mechanical Science and Technology
    • /
    • 제19권spc1호
    • /
    • pp.336-342
    • /
    • 2005
  • The DC motor of a vehicle may cause noise and vibration due to high-speed revolution, which can make a driver feel uncomfortable. There have been various studies attempting to solve these problems, mostly focusing on the causes of noise and vibration and a means of preventing them. The CAE methodology is more efficient than a real test for the purpose of looking for various design parameters to reduce the noise and vibration of the DC motor. In this study, a design process for reducing brush noise is presented with the use of a computer model, which is made by using a multi-body dynamics program (DADS). The design parameters to reduce the brush noise and vibration were proposed using a computer model. They were used to reduce the noise and vibration of the DC motor and verified by the test results of the fan DC motor in the vehicle. This method may be applicable to various DC motors.

다물체 동역학을 이용한 DC 모터 소음 저감에 관한 연구 (The Noise Reduction of A DC Motor Using Multi-body Dynamics)

  • 정일호;박태원;박지연
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.875-880
    • /
    • 2004
  • The DC Motor of a vehicle may cause noise and vibration due to high-speed revolution, which can make a driver feel uncomfortable. There have been various studies that attempted to solve these problems, mostly focusing on the causes of noise and vibration and the means of preventing them. The CAE methodology is more efficient than a real test for the purpose of looking for various design parameters to reduce the noise and vibration of the DC motor. In this study, a design process for reducing brush noise is presented with the use of a computer model, which is made by using a multi-body dynamics program (DADS). The design parameters to reduce the brush noise and vibration were proposed using a computer model. They were used to reduce the noise and vibration of a DC motor and verified by the test results of a fan DC motor in a vehicle. This method may be applicable to various DC motors.

  • PDF

유한 요소법을 이용한 차량용 팬 DC 모터 소음 저감에 관한 연구 (A Study on Noise Reduction of a Fan DC Motor in a Vehicle using FEM)

  • 정일호;서종휘;박태원;김주용
    • 한국자동차공학회논문집
    • /
    • 제12권6호
    • /
    • pp.158-165
    • /
    • 2004
  • The DC motor in a vehicle may cause noise and vibration because of high speed revolution, which can make a driver feel uncomfortable. There have been various studies attempting to solve these problems, focusing mostly on the causes of and ways to reduce noise and vibration. It is suggested that the noise in a DC motor may be primarily due to interaction between a brush and a commutator. Brush noise, the most common noise in a DC motor, results from a brush bounced from the surface of the commutator, fluctuation of the friction between the brush and the commutator, and the impact on the brush when passing over slots of the commutator. Based on the noise test, one of the most important design parameters was shown to be the roundness of the commutator. As the DC motor is used, the roundness of the commutator gets bigger with subsequent increase of the level of brush noise and vibration. There must be a threshold in order to prevent the brush noise from getting worse. Using the method of CAE is more efficient than the real test for purposes of looking for various design parameters to maintain the roundness of the commutator. In this study, the design process to reduce the brush noise is presented with the use of a computer model. The design parameters to reduce the brush noise and vibration are proposed by using FEM. The design parameters are used to reduce the noise and vibration of a DC motor and it is verified with the test results on a fan DC motor in a vehicle. This method may be applicable to various DC motor.

농용트랙터를 위한 2자유도를 갖는 능동형 좌석 현가장치 개발(I) - 능동형 좌석 현가장치 제어시스템의 개발 - (Development of Active Seat Suspension with 2 DOF for Agricultural Tractors(I) - Development of Control System for Active Seat Suspension -)

  • 유지훈;이규철;김기영;박형배;류관희
    • Journal of Biosystems Engineering
    • /
    • 제34권5호
    • /
    • pp.315-324
    • /
    • 2009
  • Various types of vibration are transmitted to operators of agricultural tractors while working in the field. Most harmful vibration to human body is ride vibrations with low frequency ranging from 1 to 10 Hz, caused by rough terrain. These ride vibration has vertical and rotational components. This study was conducted to develop an active seat suspension system with two degrees of freedoms, enabling effectively reduce vibrations in vertical and pitch motions. Therefore, a mechanism for the active seat suspension was developed, and an electro-hydraulic servo system and a controller to drive the active seat suspension system were also developed in this study. A simulation model was developed to evaluate how the active seat suspension system effectively reduce the vibrations transmitted to the base of seat. Active seat suspension was optimized to enhance the performance using the developed simulation model. The performance of the seat suspension system was evaluated according to the test codes described in EEC78/764 in order to investigate the feasibility of application to agricultural tractors. The result showed that the developed active seat suspension system could reduce the magnitude of vertical vibration up to 80% for the input vibrations according to the test codes described in EEC78/764. The system could reduce the rotational displacement of ${\pm}\;2.5$ degrees up to 50% for the pitch vibration on the average in the frequency range of 1 to 2 Hz.

볼 자동균형장치를 채용한 드럼세탁기의 모델링 및 동적 거동 해석 (Modeling and Dynamic Analysis of a Front Loaded Washing Machine with Ball Type Automatic Balancer)

  • 이준영;조성오;김태식;박윤서
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1997년도 추계학술대회논문집; 한국과학기술회관; 6 Nov. 1997
    • /
    • pp.119-131
    • /
    • 1997
  • Ball type automatic balancer is used to reduce the vibration caused by unbalance of rotor. In this study, A analytic modeling of a front loaded washing machine with ball type automatic balancer has been suggested theoretically and ADAMS has been used to analyze the dynamic characteristics of automatic balancer. It is found from simulation and experimental results that the automatic balancer suppress the steady state vibration of the washing machine effectively. The test results match well with the simulation results of ADAMS, thereby the dynamic model of ADAMS can be used as virtual prototype to predict the vibration characteristics which could be changed by the modification of design variable and can reduce the design cycle sharply. To maximize the balancing effect of automatic balancer, the friction between balls and race and the deviation between geometric center and rotation center of drum need to be minimized and the optimum design for the stiffness of flange shaft and the angular acceleration of drum should be achieved.

  • PDF

LQG design scheme for multiple vibration controllers in a data center facility

  • Kohiyama, Masayuki;Yoshida, Minako
    • Earthquakes and Structures
    • /
    • 제6권3호
    • /
    • pp.281-300
    • /
    • 2014
  • This study proposes a scheme to design control parameters for a data center facility with a vibration controller on its top floor and a secondary isolation device with its own vibration controller designed to protect vibration-sensitive computer equipment. The aim is to reduce the effects of acceleration and drift from an earthquake on computer servers placed on the isolation device that must operate during a seismic event. A linear elastic model is constructed and the evaluation function of the linear quadratic Gaussian (LQG) control is formulated. The relationship between the control parameters and the responses is examined, and based on the observations, a control parameter design scheme is constructed to reduce the responses of both the building and the computer server effectively.