• 제목/요약/키워드: Redox mechanism

검색결과 138건 처리시간 0.026초

In-situ Raman Spectroscopic Study of Nickel-base Alloys in Nuclear Power Plants and Its Implications to SCC

  • Kim, Ji Hyun;Bahn, Chi Bum;Hwang, Il Soon
    • Corrosion Science and Technology
    • /
    • 제3권5호
    • /
    • pp.198-208
    • /
    • 2004
  • Although there has been no general agreement on the mechanism of primary water stress corrosion cracking (PWSCC) as one of major degradation modes of Ni-base alloys in pressurized water reactors (PWR's), common postulation derived from previous studies is that the damage to the alloy substrate can be related to mass transport characteristics and/or repair properties of overlaid oxide film. Recently, it was shown that the oxide film structure and PWSCC initiation time as well as crack growth rate were systematically varied as a function of dissolved hydrogen concentration in high temperature water, supporting the postulation. In order to understand how the oxide film composition can vary with water chemistry, this study was conducted to characterize oxide films on Alloy 600 by an in-situ Raman spectroscopy. Based on both experimental and thermodynamic prediction results, Ni/NiO thermodynamic equilibrium condition was defined as a function of electrochemical potential and temperature. The results agree well with Attanasio et al.'s data by contact electrical resistance measurements. The anomalously high PWSCC growth rate consistently observed in the vicinity of Ni/NiO equilibrium is then attributed to weak thermodynamic stability of NiO. Redox-induced phase transition between Ni metal and NiO may undermine the integrity of NiO and enhance presumably the percolation of oxidizing environment through the oxide film, especially along grain boundaries. The redox-induced grain boundary oxide degradation mechanism has been postulated and will be tested by using the in-situ Raman facility.

제작조건이 전자비임으로 제작된 텅스텐산화물 박막의 전기화학적 퇴화에 미치는 영향 (The influence of preparation conditions on the electrochemical degradation of tungsten oxide thin films prepared by electron beam deposition)

  • 이길동
    • 한국진공학회지
    • /
    • 제7권4호
    • /
    • pp.306-313
    • /
    • 1998
  • 전기적 착색 텅스텐산화물 박막이 전자비임 증착법에 의해 제작되었다. 전자비임에 의한 막의 퇴화에 미치는 영향이 논의되었다. 진공도 $10^{-4}$mbar에서 제작된 막이 사이클 내 구성 시험에 의한 결과, 가장 안정하였다. 황산 수용액에서 막의 퇴화는 진공도에 의존함을 보였다. 막두께는 산화와 환원전류 그리고 광학적 특성에 큰 영향을 미쳤다. 박막들 중에서 두께 5,000$\AA$의 시료가 사이클에 의한 내구성이 가정 안정하였다. 착색과 탈색이 반복되는 동안에 막의 퇴화의 근원은 막속에 이온의 누적 때문이며, 이로인해 산화와 환원전류가 감 소하였다. 티타늄의 양이 약10~15mol% 함유된 텅스텐산화물 박막은 착색과 탈색사이클이 반복되는 동안 최소한의 퇴화가 일어나서 가정 안정하였다. 사이클이 반복되는 동안 최소한 의 막 퇴화의 주 원인은 막속에 리튬이온의 포획위치 개수의 감소에 있었으며 이로인해 막 의 내구성이 증가하였다.

  • PDF

Cell Death and Stress Signaling in Glycogen Storage Disease Type I

  • Kim, So Youn;Bae, Yun Soo
    • Molecules and Cells
    • /
    • 제28권3호
    • /
    • pp.139-148
    • /
    • 2009
  • Cell death has been traditionally classified in apoptosis and necrosis. Apoptosis, known as programmed cell death, is an active form of cell death mechanism that is tightly regulated by multiple cellular signaling pathways and requires ATP for its appropriate process. Apoptotic death plays essential roles for successful development and maintenance of normal cellular homeostasis in mammalian. In contrast to apoptosis, necrosis is classically considered as a passive cell death process that occurs rather by accident in disastrous conditions, is not required for energy and eventually induces inflammation. Regardless of different characteristics between apoptosis and necrosis, it has been well defined that both are responsible for a wide range of human diseases. Glycogen storage disease type I (GSD-I) is a kind of human genetic disorders and is caused by the deficiency of a microsomal protein, glucose-6-phosphatase-${\alpha}$ ($G6Pase-{\alpha}$) or glucose-6-phosphate transporter (G6PT) responsible for glucose homeostasis, leading to GSD-Ia or GSD-Ib, respectively. This review summarizes cell deaths in GSD-I and mostly focuses on current knowledge of the neutrophil apoptosis in GSD-Ib based upon ER stress and redox signaling.

L-ASCORBIC ACID AND ARSENIC TRIOXIDE EXERT THE SYNERGISTIC EFFECT TO INDUCE THE GROWTH ARREST AND THE APOPTOSIS OF HUMAN ACUTE PROMYELOCYTIC LEUKEMIA, HL-60 VIA MODULATING REDOX STATUS, MAPK PATHWAY AND APOPTOSIS-RELATED FACTORS

  • Seong-Su Han;Sook J. Lee;Seung-Tae Chung;Juno H. Eom;Young-Joon Surh;Hye K. Park;Mary H. Park;Won S. Kim;Kihyun Kim
    • 한국독성학회:학술대회논문집
    • /
    • 한국독성학회 2001년도 International Symposium on Dietary and Medicinal Antimutgens and Anticarcinogens
    • /
    • pp.145-146
    • /
    • 2001
  • There are increasing evidences that L-ascorbic acid (LAA) is selectively toxic to some types of tumors at physiological concentrations as a prooxidant, rather than antioxidant. However, the mechanism by which LAA initiates cellular signaling toward cell death is still unclear. Therefore, to determine whether LAA might be useful for the treatment of human acute promyelocytic leukemia (APL), HL-60 cells, the effects of LAA on proliferation, redox system, MAPK and induction of apoptotic cascades were investigated.(omitted)

  • PDF

Intracellular $Ca^{2+}$ release mediates apoptosis induced by ascorbic acid (vitamin C) in HepG2 human hepatoma cells

  • Kang, Young-Shin;Lee, Yong-Soo
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2-2
    • /
    • pp.88.2-88.2
    • /
    • 2003
  • Ascorbic acid (vitamin C) has been shown to have anti-cancer actions. However, the exact mechanism of this action is not fully understood. In this study we investigated the possible mechanism of anti-cancer action of ascorbic acid in HepG2 human hepatoblastoma cells. Ascorbic acid induced apoptotic cell death in a dose-dependent manner in the HepG2 cells, assessed by the flow cytometric analysis of hypodiploid nuclei stained with propodium iodide. In addition, ascorbic acid increased intracellular Ca$\^$2+/ concentration, whereas the level of reactive oxygen species was not significantly changed, suggesting that ascorbic acid may not alter cellular redox potential in the cells. (omitted)

  • PDF

Charge/Discharge Mechanism of Multicomponent Olivine Cathode for Lithium Rechargeable Batteries

  • Park, Young-Uk;Shakoor, R.A.;Park, Kyu-Young;Kang, Ki-Suk
    • Journal of Electrochemical Science and Technology
    • /
    • 제2권1호
    • /
    • pp.14-19
    • /
    • 2011
  • Quasi-equilibrium profiles are analyzed through galvanostatic intermittent titration technique (GITT) and potentiostatic intermittent titration technique (PITT) to study the charge/discharge mechanism in multicomponent olivine structure ($LiMn_{1/3}Fe_{1/3}Co_{1/3}PO_4$). From GITT data, the degree of polarization is evaluated for the three regions corresponding to the redox couples of $Mn^{2+}/Mn^{3+}$, $Fe^{2+}/Fe^{3+}$ and $Co^{2+}/Co^{3+}$. From PITT data, the current vs. time responses are examined in each titration step to find out the mode of lithium de-intercalation/intercalation process. Furthermore, lithium diffusivities at specific compositions (x in $Li_xMn_{1/3}Fe_{1/3}Co_{1/3}PO_4$) are also calculated. Finally, total capacity ($Q^{total}$) and diffusional capacity ($Q^{diff}$) are obtained for some selected voltage steps. The entire study consistently confirms that the charge/discharge mechanism of multicomponent olivine cathode is associated with a one-phase reaction rather than a biphasic reaction.

아쿠아옥소몰리브덴(IV) 삼합체 착물과 바나듐(V)과의 반응에 대한 속도와 메카니즘 (Rates and Mechanism of the Reactions of Aquaoxomolybdenum (IV) Trimer with Vanadium (V))

  • 김창수;이문평
    • 대한화학회지
    • /
    • 제31권2호
    • /
    • pp.178-183
    • /
    • 1987
  • $VO_2^+$$[Mo_3O_4(H_2O)_9]^{4+}$의 산화반응에 대한 속도론을 $25^{\circ}C$에서 분광광도법으로 연구하였다. 과량의 $VO_2^+$에서 $[Mo_3O_4(H_2O)_9]^{4+}$의 산화반응은 $Mo^{IV}_3+6V^V{\rightleftarrows}3Mo^{IV}+6V^IV}$이다. 반응에 대한 관찰된 속도상수, $k_{obs}$는 수소이온과 $VO^{2+}$에 의존한다. $[Mo_3O_4(H_2O)_9]^{4+}$$VO_2^+$의 산화-환원반응에 대한 상세한 메카니즘이 제시되며 이에 대하여 논의된다.

  • PDF

아쿠아옥소몰리브텐(V) 이합체 착물과 바나듐(V)과의 반응에 대한 속도와 메카니즘 (Rates and Mechanism of the Reactions of Aquaoxomolybdenum(V) Dimer with Vanadium(V))

  • 김창수;이문평
    • 대한화학회지
    • /
    • 제30권6호
    • /
    • pp.532-537
    • /
    • 1986
  • $VO_2^+$$[Mo_2O_4(H_2O)_6]^{2+}$의 반응에 대한 속도론은 25$^{\circ}$C에서 분광광도법으로 연구하였다. $[Mo_2O_4(H_2O)_6]^{2+}$이 산화반응의 화학양론은$ Mo_2^V + 2V^V {\rightleftharpoons} 2Mo^{VI} + 2V^{IV}$이다. 관찰된 유사일차속도상수, $k_{obs}$는 수소이온과 $ VO^{2+}$에 의존한다. $[Mo_2O_4(H_2O)_6]^{2+}$$VO^{2+}$의 산화-환원반응에 대한 메카니즘이 제시되며 이에 대하여 논의된다.

  • PDF

Study the Electrochemical Reduction of Some Triazines in N,N-Dimethylformamide at Glassy Carbon Electrode

  • Fotouhi, L.;Farzinnegad, N.;Heravi, M.M.;Khaleghi, Sh.
    • Bulletin of the Korean Chemical Society
    • /
    • 제24권12호
    • /
    • pp.1751-1756
    • /
    • 2003
  • An electrochemical study related to the electroreduction of 4-amino-6-methyl-3-thio-1,2,4-triazin-5-one(I), 6-methyl-3-thio-1,2,4-triazin-5-one(II), and 2,4-dimetoxy-6-methyl-1,3,5-triazine(III) in dimethylformamide at glassy carbon electrode has been performed. A variety of electrochemical techniques, such as differential pulse voltammetry (DPV), cyclic voltammetry (CV), chronoamperometry, and coulometry were employed to clarify the mechanism of the electrode process. The compounds I and II with thiol group exhibited similar redox behavior. Both displayed two cathodic peaks, whereas the third compound, III, without thiol group showed only one cathodic peak in the same potential range of the second peak of I and II. The results of this study suggest that in the first step the one electron reduction of thiol produced a disulfide derivative and in the second reduction step the azomethane in the triazine ring was reduced in two electron processes. A reduction mechanism for all three compounds is proposed on this basis. In addition, some numerical constants, such as diffusion constant, transfer coefficient, and rate constant of coupled chemical reaction in the first reduction peak were also reported.

Characteristics of Electricity Production by Metallic and Non-metallic Anodes Immersed in Mud Sediment Using Sediment Microbial Fuel Cell

  • Haque, Niamul;Cho, Dae-Chul;Kwon, Sung-Hyun
    • 한국환경과학회지
    • /
    • 제23권10호
    • /
    • pp.1745-1753
    • /
    • 2014
  • Sediment microbial fuel cell (SMFC), equipped with Zn, Al, Cu, Fe or graphite felt (GF) anode and marine sediment, was performed. Graphite felt was used as a common cathode. SMFC was single chambered and did not use any redox mediator. The aim of this work was to find efficient anodic material. Oxidation reduction potential (ORP), cell voltage, current density, power density, pH and chemical oxygen demand (COD) were measured for SMFC's performance.. The order of maximum power density was $913mWm^{-2}$ for Zn, $646mWm^{-2}$ for Fe, $387.8mWm^{-2}$ for Cu, $266mWm^{-2}$ for Al, and $127mWm^{-2}$ for graphite felt (GF). The current density over voltage was found to be strongly correlated with metal electrodes, but the graphite felt electrode, in which relatively weaker electricity was observed because of its bio-oriented mechanism. Metal corrosion reactions and/or a complicated microbial electron transfer mechanism acting around the anodic compartment may facilitate to generate electricity. We presume that more sophisticated selection of anodic material can lead to better performance in SMFC.