DOI QR코드

DOI QR Code

Charge/Discharge Mechanism of Multicomponent Olivine Cathode for Lithium Rechargeable Batteries

  • Park, Young-Uk (Department of Materials Science and Engineering, Seoul National University) ;
  • Shakoor, R.A. (Department of Materials Science and Engineering and KAIST Institute for Eco-Energy, KAIST) ;
  • Park, Kyu-Young (Department of Materials Science and Engineering and KAIST Institute for Eco-Energy, KAIST) ;
  • Kang, Ki-Suk (Department of Materials Science and Engineering, Seoul National University)
  • Received : 2010.12.17
  • Accepted : 2011.02.27
  • Published : 2011.03.31

Abstract

Quasi-equilibrium profiles are analyzed through galvanostatic intermittent titration technique (GITT) and potentiostatic intermittent titration technique (PITT) to study the charge/discharge mechanism in multicomponent olivine structure ($LiMn_{1/3}Fe_{1/3}Co_{1/3}PO_4$). From GITT data, the degree of polarization is evaluated for the three regions corresponding to the redox couples of $Mn^{2+}/Mn^{3+}$, $Fe^{2+}/Fe^{3+}$ and $Co^{2+}/Co^{3+}$. From PITT data, the current vs. time responses are examined in each titration step to find out the mode of lithium de-intercalation/intercalation process. Furthermore, lithium diffusivities at specific compositions (x in $Li_xMn_{1/3}Fe_{1/3}Co_{1/3}PO_4$) are also calculated. Finally, total capacity ($Q^{total}$) and diffusional capacity ($Q^{diff}$) are obtained for some selected voltage steps. The entire study consistently confirms that the charge/discharge mechanism of multicomponent olivine cathode is associated with a one-phase reaction rather than a biphasic reaction.

Keywords

References

  1. J. Kim, D.-H. Seo, S.-W. Kim, Y.-U. Park and K. Kang, Chem. Commun., 46, 1305 (2010). https://doi.org/10.1039/b922133f
  2. D.-H. Seo, H. Gwon, S.-W. Kim, J. Kim and K. Kang, Chem. Mater., 22, 518 (2010). https://doi.org/10.1021/cm903138s
  3. K. Kang, Y. Shirely, M.J. Berger, C.P. Grey and G. Ceder, Science, 311, 977 (2006). https://doi.org/10.1126/science.1122152
  4. X.L. Wu, L.Y. Jiang, F.F. Cao, Y.G. Guo and L.J. Wan, Adv. Mater., 21, 2710 (2009). https://doi.org/10.1002/adma.200802998
  5. M. Armand and J.-M. Tarascon, Nature, 451, 652 (2008). https://doi.org/10.1038/451652a
  6. T. Jiang, G. Chen, A. Li, C. Wang and Y. Wei, J. Alloys Compd., 478, 604 (2009). https://doi.org/10.1016/j.jallcom.2008.11.147
  7. B.L. Ellis, W.R.M. Makahnoouk, Y. Makimura, K. Toghill and L.F. Nazar, Nat. Mater., 6, 749 (2007). https://doi.org/10.1038/nmat2007
  8. M.S. Whittingham, Chem. Rev., 104, 4271 (2004). https://doi.org/10.1021/cr020731c
  9. H. Gwon, D.-H. Seo, S.-W. Kim, J. Kim and K. Kang, Adv. Funct. Mater., 19, 3285 (2009). https://doi.org/10.1002/adfm.200900414
  10. Y.-U. Park, J. Kim, H. Gwon, D.-H. Seo, S.-W. Kim and K. Kang, Chem. Mater., 22, 2573 (2010). https://doi.org/10.1021/cm903616d
  11. M. Seman, J. Marino, W. Yang and C.A. Wolden, J. Non-Cryst. Solids, 351, 1987 (2005). https://doi.org/10.1016/j.jnoncrysol.2005.05.016
  12. T. Nishina, H. Ura and I. Uchida, J. Electrochem. Soc., 144, 1273 (1997). https://doi.org/10.1149/1.1837582
  13. C.J. Wen, B.A. Boukamp, R.A. Huggins and W. Weppner, J. Electrochem. Soc., 126, 2258 (1979). https://doi.org/10.1149/1.2128939
  14. C. Delacourt, P. Poizot, M. Morcrette, J.-M. Tarascon and C. Masquelier, Chem. Mater., 16, 93 (2004). https://doi.org/10.1021/cm030347b
  15. A.K. Padhi, K.S. Nanjundaswamy and J.B. Goodenough, J. Electrochem. Soc., 144, 1188 (1997). https://doi.org/10.1149/1.1837571
  16. N. Meethong, H.-Y. Huang, S.A. Speakman, W.C. Carter and Y.-M. Chiang, Adv. Funct. Mater., 17, 1115 (2007). https://doi.org/10.1002/adfm.200600938
  17. N. Meethong, H.-Y. Huang, W.C. Carter and Y.-M. Chiang, Electrochem. Solid-State Lett., 10, A134 (2007). https://doi.org/10.1149/1.2710960
  18. N. Meethong, Y.-H. Kao, M. Tang, H.-Y. Huang, W.C. Carter and Y.-M. Chiang, Chem. Mater., 20, 6189 (2008). https://doi.org/10.1021/cm801722f
  19. N. Meethong, Y.-H. Kao, S.A. Speakman and Y.-M. Chiang, Adv. Funct. Mater., 19, 1060 (2009). https://doi.org/10.1002/adfm.200801617
  20. N. Meethong, Y.-H. Kao, W.C. Carter and Y.-M. Chiang, Chem. Mater., 22, 1088 (2010). https://doi.org/10.1021/cm902118m
  21. M.A. Vorotyntsev, M.D. Levi and D. Aurbach, J. Electroanal. Chem., 572, 299 (2004). https://doi.org/10.1016/j.jelechem.2003.12.014
  22. M.D. Levi, R. Demadrille, A. Pron, M.A. Vorotyntsev, Y. Gofer and D. Aurbach, J. Electrochem. Soc., 153, E61 (2005).

Cited by

  1. Electrode Materials for Rechargeable Sodium-Ion Batteries: Potential Alternatives to Current Lithium-Ion Batteries vol.2, pp.7, 2012, https://doi.org/10.1002/aenm.201200026
  2. Polyanionic (Phosphates, Silicates, Sulfates) Frameworks as Electrode Materials for Rechargeable Li (or Na) Batteries vol.113, pp.8, 2013, https://doi.org/10.1021/cr3001862
  3. Study on structure and electrochemical properties of carbon-coated monoclinic Li3V2(PO4)3 using synchrotron based in situ X-ray diffraction and absorption vol.569, 2013, https://doi.org/10.1016/j.jallcom.2013.03.188
  4. Catalytic activity of carbon-sphere/Co3O4/RuO2 nanocomposite for Li-air batteries vol.31, pp.1-2, 2013, https://doi.org/10.1007/s10832-013-9831-y
  5. The Reaction Mechanism and Capacity Degradation Model in Lithium Insertion Organic Cathodes, Li2C6O6, Using Combined Experimental and First Principle Studies vol.5, pp.17, 2014, https://doi.org/10.1021/jz501557n
  6. Study of the lithium diffusion properties and high rate performance of TiNb6O17 as an anode in lithium secondary battery vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-16711-9
  7. Enhanced electrochemical properties of Li[Ni0.5Co0.2Mn0.3]O2 cathode by surface coating using LaF3 and MgF2 vol.29, pp.2, 2012, https://doi.org/10.1007/s10832-012-9747-y