• Title/Summary/Keyword: Red ginseng saponin

Search Result 312, Processing Time 0.03 seconds

Effects of Processing Methods on the Quality of Ginseng Leaf Tea (인삼엽차(人蔘葉茶) 제조방법(製造方法)이 품질(品質)에 미치는 영향(影響))

  • Kim, Sang-Dal;Do, Jae-Ho;Oh, Hoon-Il;Lee, Song-Jae
    • Korean Journal of Food Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.267-272
    • /
    • 1981
  • The qualities of ginseng leaf teas prepared by six different processing methods were evaluated to develop the leaf tea. The leaf tea prepared by fermentation at $30^{\circ}C$ showed the highest in the ratio of 30 min water extracts to the total extractable matters. This ratio was followed in decreasing order by the heat dried tea and the one fermented at $25^{\circ}C$. The yellow, orange and red color intensities of water extracts were the highest in the tea prepared by toasting method followed by teas fermented at $30^{\circ}C\:and\:25^{\circ}C$. The amount of saponins extracted with boiling water was the highest in the tea fermented at $30^{\circ}C$ among teas investigated. This tea was also most acceptable in sensory evaluation by the flavour profile method.

  • PDF

Ginsenoside Rf inhibits cyclooxygenase-2 induction via peroxisome proliferator-activated receptor gamma in A549 cells

  • Song, Heewon;Park, Joonwoo;Choi, KeunOh;Lee, Jeonggeun;Chen, Jie;Park, Hyun-Ju;Yu, Byeung-Il;Iida, Mitsuru;Rhyu, Mee-Ra;Lee, YoungJoo
    • Journal of Ginseng Research
    • /
    • v.43 no.2
    • /
    • pp.319-325
    • /
    • 2019
  • Background: Ginsenoside Rf is a ginseng saponin found only in Panax ginseng that affects lipid metabolism. It also has neuroprotective and antiinflammatory properties. We previously showed that Korean Red Ginseng (KRG) inhibited the expression of cyclooxygenase-2 (COX-2) by hypoxia via peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$). The aim of the current study was to evaluate the possibility of ginsenoside Rf as an active ingredient of KRG in the inhibition of hypoxia-induced COX-2 via $PPAR{\gamma}$. Methods: The effects of ginsenoside Rf on the upregulation of COX-2 by hypoxia and its antimigration effects were evaluated in A549 cells. Docking of ginsenoside Rf was performed with the $PPAR{\gamma}$ structure using Surflex-Dock in Sybyl-X 2.1.1. Results: $PPAR{\gamma}$ protein levels and peroxisome proliferator response element promoter activities were promoted by ginsenoside Rf. Inhibition of COX-2 expression by ginsenoside Rf was blocked by the $PPAR{\gamma}-specific$ inhibitor, T0070907. The $PPAR{\gamma}$ inhibitor also blocked the ability of ginsenoside Rf to suppress cell migration under hypoxia. The docking simulation results indicate that ginsenoside Rf binds to the active site of $PPAR{\gamma}$. Conclusions: Our results demonstrate that ginsenoside Rf inhibits hypoxia induced-COX-2 expression and cellular migration, which are dependent on $PPAR{\gamma}$ activation. These results suggest that ginsenoside Rf has an antiinflammatory effect under hypoxic conditions. Moreover, docking analysis of ginsenoside Rf into the active site of $PPAR{\gamma}$ suggests that the compound binds to $PPAR{\gamma}$ in a position similar to that of known agonists.

Comparison of Physicochemical Properties and Release Characteristics of Extruded Tissue Cultured Mountain Ginseng (압출성형 산삼배양근의 이화학적 성질 및 침출특성의 비교)

  • Han, Jae-Yoon;Chung, Ki-Hwa;Ryu, Gi-Hyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.8
    • /
    • pp.1018-1024
    • /
    • 2008
  • The objective of this study is to compare the physicochemical properties and release characteristics of red ginseng (A) and tissue cultured mountain ginseng (B) extruded tissue cultured mountain ginsengs at barrel temperatures 110 (C) and $120^{\circ}C$ (D) to produce tissue cultured mountain ginseng-like comercial red ginseng by extrusion process. Extrusion process variables, water content and screw speed were fixed at 25% and 200 rpm, respectively. In the results, reducing and total sugar content were found to be relatively higher in A. The acidic polysaccharides content of B was the lowest among the ginseng samples. Acidic polysaccharide was increased 3 times by extrusion process. A and B were three times higher at maximum than C and D in polyphenolic compound. Polyphenolic compound content was relatively low by extrusion of ginsengs. Amino acid contents of B, C and D were $35{\sim}42\;{\mu}g/mL$; in contrast, A contained $25\;{\mu}g/mL$. The crude saponin content of C and D were higher than A and B.

Effect of Red Ginseng Total Saponin on Sciatic Nerve Regeneration (홍삼사포닌이 좌골신경 재생에 미치는 영향)

  • Han, Hye-Jeong;Lee, Hae-June;Kang, Seong-Soo;Lee, Soo-Han;Cho, Ick-Hyun;Lee, Jong-Hwan;Nah, Seung-Yeol;Park, Chang-Hyun;Uhm, Chang-Sub;Bae, Chun-Sik
    • Journal of Ginseng Research
    • /
    • v.27 no.3
    • /
    • pp.103-109
    • /
    • 2003
  • We investigated the effect of ginseng total saponin (GTS) on the regeneration process of experimentally crush injured rat sciatic nerves. The bilateral sciatic nerves of fifty adult male Sprague-Dawley rats were compressed surgically with a straight hemostat for 30 seconds with 1 mm width. Twenty rats were divided into four groups to test the dose-dependent effect of GTS (0, 50, 100, or 150 mg/kg, i.p.). Saline for vehicle control group or GTS dissolved in saline was administerd for three weeks. After that period of time, the numbers of total myelinated axon and degenerated myelin in the sciatic nerves of bilateral legs were examined and analyzed using image analysis system to confirm a morphological effect of GTS. We found that the most effective concentration of GTS for the regeneration of damaged sciatic nerve was 150 mg/kg. In another set of experiment, thirty rats were divided into two groups as saline-treated vehicle group and GTS-treated group (150 mg/kg, i.p.) for three weeks. Every week we examined the numbers of total myelinated axon and degenerated myelin in the sciatic nerves of bilateral legs using image analysis system to evaluate the effect of GTS on injured nerves. We found that the regeneration of damaged sciatic nerves was facilitated in GTS-treated group compared to saline-treated group until two weeks. However, after that period of time we could not observe the significant difference between saline-treated group and GTS-treated group. These results suggest that GTS is a useful adjuvant therapy for the regeneration of the peripheral nerve injury in short period of treatment.

EFFECTS OF GINSENG COMPONENTS ON RODENTICIDE VACOR-INDUCED DIABETES MELLITUS IN RATS (인삼성분이 살서제(Vacor)로 유발시킨 쥐의 당뇨에 미치는 영향)

  • Lee Min-wha;Lee Tai-hee;Ahn Bong-whan;Park Byung-ju;Yang Sung-yeul
    • Proceedings of the Ginseng society Conference
    • /
    • 1984.09a
    • /
    • pp.83-88
    • /
    • 1984
  • It is now well established that the rodenticide Vacor (N-3-pyridyl-mehtyl-N'-p-nitropheny-lurea) causes a hyperglycemia in human and rats. It is also reported that there are some components (DPG-3) in ginseng radix which cause hypoglycemic effect on alloxan diabetic mice. In the present study, attempts were made to demonstrate in Vacor-poisoned rats the hypo-glycemic activity of red ginseng component(RGC), which was extracted by Kimura's DPG-3 extraction procedure and found to be effective for lowering a hyperglycemia in alloxan-diabetic rats. Vacor in a dose of $LD_{50}$ (10mg/kg) produced a glucose intolerance with a paradoxical moderate increase in blood immunoreactive insulin and derangement in glucose metabolism of epididymal adipocytes in rats. Although RGC (20mg/kg, i.p.) did not exert any significant influence on a hyperglycemia induced by large lethal doses (25mg/kg) of Vacor ingestion, it improved the LDso Vacor-induced glucose intolerance and caused a further increase in blood insulin levels in Vacor-poisoned rats. The administration of RGC (20mg/kg, i.p.) normalized Vacor-induced depression of glucose metabolism and lipogenesis in the epididymal adipocytes with an improvement of reduced responses to insulin of adipocytes from Vacor-poisoned rats. These results suggest that some red ginsneng components contained in RGC fraction normalize the depressed peripheral glucose unitlization and insulin response and eventually lead to an improvement of abnormal glucose tolerance developed in rats poisoned with small doses of Vacor.

  • PDF

A Study on the Effect of Mountain Ginseng Adventitious Roots Extract (산삼부정근 추출물의 효능${\cdot}$효과에 관한 연구)

  • Yoo Yung-Geun;Joung Min-Seok;Lee Youn-Hee;Choi Jong-Wan;Kim Joong-Hoi;Paek Kee-Yoeup
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.3 s.47
    • /
    • pp.377-383
    • /
    • 2004
  • This study reviewed the application of an extract from mountain ginseng adventitious roots which had been grown through tissue culture as a cosmetic ingredient. The mountain ginseng adventitious roots were derived from mountain ginseng callus that was induced from mountain ginseng root whose origin is estimated to date back about one hundred years ago. The adventitious roots were separated from callus and grown in a 20 L bioreactor. In order to proliferate the adventitious roots, they were cultured for 5 weeks in bioreactor. Then the harvested mountain ginseng adventitious roots were dried and extracted. For verifying skin whitening effect of an extract from the tissue-cultured mountain ginseng adventitious roots in vivo, we performed the clinical test of it. The research showed the significant skin whitening effect of a mountain ginseng adventitious roots extract and the statistical analysis showed a significant difference (p<0.0001) between sample ($2\%$ mountain ginseng adventitious roots extract) and placebo. But, some saponins showed below $10\%$ inhibitory effect of tyrosinase and melanin synthesis in B-16 melanoma. The extracts of red ginseng and ginseng which were the same concentration as the tissue-cultured mountain ginseng adventitious roots extract's showed little inhibitory effect of tyrosinase and melanin synthesis in B-16 melanoma. In DPPH test, Anti-hydroxyl radical activity of $0.5\%$ the tissue-cultured mountain ginseng adventitious roots extract was $86\%.$.

Seven New Ginsenosides From a New Processed Ginseng

  • Park, Jeong-Hill;Kim, Jong-Moon;Han, Sang-Beom;Kim, Na-Young;Lee, Seung-Ki;Kim, Nak-Doo;Park, Man-Ki;Han, Byung-Hoon
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1998.11a
    • /
    • pp.175-175
    • /
    • 1998
  • We reported a new processed ginseng with increased biological activities which is named as “sun ginseng (SG)”. Study on the saponin constituents of SG led to the isolation of seven new ginsenosides named as ginsenoside Rk$_1$, Rk$_2$, Rk$_3$, Rs$_4$, Rs$\_$5/, Rs$\_$6/ and Rs$\_$7/. Ginsenoside Rk$_1$, Rk$_2$ and Rk$_3$ were the Δ$\^$20(21),24(25)/-diene dammarane compounds, while ginsenoside Rs$_4$, Rs$\_$5/, Rs$\_$6/ and Rs$\_$7/ were mono-acetylated compounds. Many other ginsenosides which were reported as minor constituents of red ginseng were also isolated, which include 20(S)-Rg$_3$, 20(R)-Rg$_3$, Rg$\_$5/, Rg$\_$6/, F$_4$, Rh$_4$, 20(S)-Rs$_3$ and 20(R)-Rs$_3$. The major ginsenosides of SG were 20(S)-Rg$_3$, 20(R)-Rg$_3$, Rk$_1$ and Rg$\_$5/.

  • PDF

Quality Characteristics of Yakgwa Added with Ginseng Fruit, Leaf and Root (인삼열매, 잎 및 뿌리를 첨가한 약과의 품질특성)

  • Lee, Ka-Soon;Kim, Gwan-Hou;Seong, Bong-Jae;Kim, Sun-Ick;Han, Seung-Ho;Lee, Sox-Su;Song, Mi-Ran;Lee, Gyu-Hee
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.12
    • /
    • pp.1981-1987
    • /
    • 2013
  • In order to use the excellent features of saponin and phenolic compounds in the leaf and fruit of ginseng, ginseng fruit Yakgwa (GFY), ginseng leaf Yakgwa (GLY) and ginseng root Yakgwa (GRY) were made via adding the fruit, leaf and root powder in the process of making Yakgwa, and the properties were investigated. When making Yakgwa, GFY and GLY had superior expansion compared to GRY. 2.5-GFY (added 2.5% ginseng fruit powder) and 2.5-GLY (added 2.5% ginseng leaf powder) increased about 1.68 times and had better expansion than the control; however, when more amount of fruit and leaf were added, the expansion was decreased. The GFY and GLY showed green and red color, and the brightness and yellowness were decreased. Oil absorption during making Yakgwa showed to increase as the amount of fruit and leaf powder were increased regardless of the ginseng parts. Hardness of Yakgwa increased as the root additives were increased, and it decreased when leaf and fruit were added. The results of sensory evaluation on ginseng-based Yakgwa showed that oily taste was lowered as the amount of fruit and leaf additives were increased, which had increased the preference. On the overall preference of Yakgwa, 5.0-GFY, 2.5-GLY and 7.5-GRY was high, which contained 2.30 mg/g, 1.02 mg/g, and 0.91 mg/g of saponin, respectively.

Optimization for Preparation of Malic acid-catalyzed Ginsenoside Rg3 by Response Surface Methodology (반응 표면 분석법을 이용한 홍삼 사포닌으로부터의 사과산 활용 진세노사이드 Rg3 전환 최적화)

  • Ki Seong Kim;Junseong Park
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.49 no.4
    • /
    • pp.375-383
    • /
    • 2023
  • Malic acid-catalyzed transformation has been developed to produce ginsenoside Rg3 which is increasingly in demand as a functional ingredient. The optimization of the conversion of red ginseng saponin (RGS) to ginsenoside Rg3 by acid catalyzed transformation was carried out using Box-Behnken design (BBD) based on Response Surface Analysis (RSM). The main independent variables were malic acid concentration, temperature, and reaction time. Conversion of ginsenoside Rg3 was performed according to BBD model and optimization conditions were analyzed. The concentration of the converted ginsenoside Rg3 ranged from 1.548 mg/L to 4.558 mg/L, and the highest production was obtained under the condition of reacting 1% malic acid, 50 ℃ and 9h. Consequently, The independent variables affecting the production of ginsenoside Rg3 were identified in the following order: malic acid concentration, reaction time and temperature. In addition, it was confirmed that the interaction between malic acid concentration and reaction time had a greater influence than the temperature.

Changes on Physicochemical Properties of Panax ginseng C. A. Meyer during Repeated Steaming Process (증숙 횟수에 따른 고려인삼의 이화학적 특성 변화)

  • Hong, Hee-Do;Kim, Young-Chan;Rho, Jeong-Hae;Kim, Kyung-Tack;Lee, Young-Chul
    • Journal of Ginseng Research
    • /
    • v.31 no.4
    • /
    • pp.222-229
    • /
    • 2007
  • Changes on physicochemical properties of fresh Korean ginseng during repeated 9 times steaming processes, steaming $90{\sim}95^{\circ}C$ for $1{\sim}3\;hr$ followed by hot air-drying at $50^{\circ}C$ for $36{\sim}48\;hr$, were investigated. The water contents decreased from 73.4% of fresh ginseng to 13.7% finally. The final yields in bases of total weights and dry matter were 21.0% and 79.0%, respectively. As the times of steaming processes increased, lightness (L value) decreased and redness (a value) increased in color of ginseng powder. Browning index also rapidly increased after 3 times of steaming process in particular. Total water soluble sugar contents decreased from 55.4% in fresh to 38.6% in final processed ginseng, but acidic polysaccharide contents increased by about 50% with increasing times of steaming process. Total phenolic compound contents significantly increased with repeated steaming processes especially after 5 times of steaming processes and crude saponin contents also increased in some degree. In the case of major ginsenosides, the contents of $Rb_1$, $Rb_2$, $Rg_1$, Re (representative ginsenosides in fresh ginseng) decreased, but those of $Rg_2$, $Rh_1$, $Rg_3$ (unique ginsenosides in red ginseng) increased after especially 5 times of steaming processes.