• Title/Summary/Keyword: Red Shift

Search Result 294, Processing Time 0.027 seconds

Composition Classification of Korea Ancient Glasses by Using Raman Spectroscopy (라만분광분석법을 이용한 한국 고대 유리의 조성 분류)

  • Sim, Woo Seok;Kim, Eun A;Lim, Soo Yeong;Kim, Hyung Min;Kim, Gyu Ho
    • Journal of Conservation Science
    • /
    • v.38 no.2
    • /
    • pp.117-123
    • /
    • 2022
  • In this study, investigated the possibility of quantitatively and qualitatively analyzing Korean ancient glasses via Raman Spectroscopy. We subjected four categories of Korean traditional glasses, namely, lead-BaO, lead, potash, and soda glasses (3, 3, 10, and 10 pieces, respectively), to this analytical technique. The results showed significant differences between the stretching and bending Raman vibration regions corresponding to these different Korean ancient glass types. Specifically, the stretching vibration regions corresponding to lead-BaO and lead glasses showed peaks at 1040 and 1000 cm-1, respectively; the stretching vibration region of normal glass appears at 1100 cm-1. The bending vibration regions corresponding to potash and soda glass showed Raman peaks at 490 and 560 cm-1, respectively. Furthermore, the Raman spectra of the lead and lead-BaO glasses showed red shifts, which depended on the amount of PbO present. Thus, our findings highlighted the possibility of quantitatively determining the amount of PbO, a major component of lead glasses, via Raman Spectroscopy.

The Study for Synthesis and Characteristic of ${\alpha},{\beta}$-tetra(phenoxy, 2-naphthoxy, 4-tritylphenoxy) Oxovanadium Phthalocyanine Derivatives (${\alpha},{\beta}$-tetra(phenoxy, 2-naphthoxy, 4-tritylphenoxy) Oxovanadium 프탈로시아닌 유도체의 합성 및 특성에 관한 연구)

  • Son, Dae-Hee;Heo, Jin;Kim, Song-Hyuk;Lee, Seung-Ho;Lee, Gun-Dae;Hong, Seong-Soo;Park, Seong-Soo
    • Applied Chemistry for Engineering
    • /
    • v.21 no.6
    • /
    • pp.638-642
    • /
    • 2010
  • After phthalonitrile derivatives were synthesized by the introduction of phenoxy, 2-naphthoxy or 4-trityl phenoxy group on ${\alpha}$- and ${\beta}$-position, oxovanadyl phthalocyanine (VOPc) derivatives containing electron-rich substituent group at different position were synthesized successfully in this investigation. The chemical structure of samples was determined by the means of $^1H$-NMR, MALDI-TOF mass spectroscopy, and FT-IR spectrometer. Also, optical and chemical properties were determined by the means of UV-Vis spectrometer, X-ray diffractometry, and thermo gravimetry. It was found that the maximum absorbing wavelength of VOPc derivatives ranged from 684 to 726 nm. Also, their solubility and Q-band were enhanced and shifted by the introduction of substitute group, respectively.

Preparation and Spectroscopic Characterization of Ilmenite-Type $CoTiO_3$ Nanoparticles

  • Zhou, Guo Wei;Lee, Don-Geun;Kim, Young-Hwan;Kim, Chang-Woo;Kang, Young-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.3
    • /
    • pp.368-372
    • /
    • 2006
  • The cobalt titanate, $CoTiO_3$ nanoparticles have been prepared by calcinations of precursor obtained from a mixture of $TiO_2$ and $Co(OH)_2$ in aqueous cetyltrimethylammonium bromide (CTAB) solution. The nanoparticles were investigated with X-ray powder diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and thermogravimetric/differential thermal analysis (TGA/DTA) to determine the crystallite size and the phase composition. The spectroscopic characterizations of these nanoparticles were also done with UV-Vis spectroscopy and FT-Raman spectroscopy. XRD patterns show that $CoTiO_3$ phase was formed at calcinations temperature above 600 ${^{\circ}C}$. UV-Vis absorption spectra indicate that the $CoTiO_3$ nanoparticles have significant red shift to the visible region (400-700 nm) with $\lambda_{max}$ = 500 nm compared to pure $TiO_2$ powder ($\lambda_{max}$ = 320 nm). The new absorption peaks (absorption at 696, 604, 520, 478,456, 383, 336, 267, 238, 208 $c m ^{-1}$), which were not appeared in FT-Raman spectra of P-25, also confirm the formation of Ti-O-Co bonds at above 600 ${^{\circ}C}$ and just not the mixtures of titanium dioxide with cobalt oxides.

Theoretical Studies of Hydrogen Bond Interactions in 4-Substituted Benzoic Acids Dimers (4-치환된 벤조산 2합체에서의 수소 결합 상호작용에 대한 이론적 연구)

  • Beni, Alireza Salimi;Chermahini, Alireza Najafi;Sharghi, Hashem
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.3
    • /
    • pp.392-399
    • /
    • 2011
  • Two conformations of benzoic acid derivatives ($NH_2$, OH, H, F, Cl, CN, NO, $NO_2$) have been investigated at MP2, DFT and HF level using the 6-311++G(d,p) basis set. It was found that the cis isomers are more stable. Hydrogen bonding formation of benzoic acids has been estimated from stabilization energies. The calculated hydrogen-bonding energies of dimers showed a cooperative interaction in the cyclic ones. It was found that an electron-releasing group (ERG) into the phenyl rings resulted in the formation of more stable hydrogen bonding. Red shift of O-H bond was found from -565.3 to -589.3 for dimers. The natural bond orbital (NBO) analysis was applied to characterize nature of the interaction.

Synthesis, Characterization, and Application of Zr,S Co-doped TiO2 as Visible-light Active Photocatalyst

  • Kim, Sun-Woo;Khan, Romana;Kim, Tae-Jeong;Kim, Wha-Jung
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.6
    • /
    • pp.1217-1223
    • /
    • 2008
  • A series of Zr,S co-doped $TiO_2$ were synthesized by a modified sol-gel method and characterized by various spectroscopic and analytical techniques. The presence of sulfur caused a red-shift in the absorption band of $TiO_2$. Co-doping of sulfur and zirconium (Zr-$TiO_2$-S) improves the surface properties such as surface area, pore volume, and pore diameter and also enhances the thermal stability of the anatase phase. The Zr-$TiO_2$-S systems are very effective visible-light active catalysts for the degradation of toluene. All reactions follow pseudo firstorder kinetics with the decomposition rate reaching as high as 77% within 4 h. The catalytic activity decreases in the following order: Zr-$TiO_2$-S >$TiO_2$-S >Zr-$TiO_2$>$TiO_2$$\approx$ P-25, demonstrating the synergic effect of codoping with zirconium and sulfur. When the comparison is made within the series of Zr-$TiO_2$-S, the catalytic performance is found to be a function of Zr-contents as follows: 3 wt % Zr-TiO2-S >0.5 wt % Zr-$TiO_2$-S> 5 wt % Zr-$TiO_2$-S >1 wt % Zr-$TiO_2$-S. Higher calcination temperature decreases the reactivity of Zr-$TiO_2$-S.

Synthesis and Characterization of CdSe Quantum Dot with Injection Temperature and Reaction Time (Injection 온도 및 합성시간에 따른 CdSe 양자점 합성 및 특성)

  • Eom, Nu-Si-A;Kim, Taek-Soo;Choa, Yong-Ho;Kim, Bum-Sung
    • Korean Journal of Materials Research
    • /
    • v.22 no.3
    • /
    • pp.140-144
    • /
    • 2012
  • Compared with bulk material, quantum dots have received increasing attention due to their fascinating physical properties, including optical and electronic properties, which are due to the quantum confinement effect. Especially, Luminescent CdSe quantum dots have been highly investigated due to their tunable size-dependent photoluminescence across the visible spectrum. They are of great interest for technical applications such as light-emitting devices, lasers, and fluorescent labels. In particular, quantum dot-based light-emitting diodes emit high luminance. Quantum dots have very high luminescence properties because of their absorption coefficient and quantum efficiency, which are higher than those of typical dyes. CdSe quantum dots were synthesized as a function of the synthesis time and synthesis temperature. The photoluminescence properties were found strongly to depend on the reaction time and the temperature due to the core size changing. It was also observed that the photoluminescence intensity is decreased with the synthesis time due to the temperature dependence of the band gap. The wavelength of the synthesized quantum dots was about 550-700 nm and the intensity of the photoluminescence increased about 22~70%. After the CdSe quantum dots were synthesized, the particles were found to have grown until reaching a saturated concentration as time increased. Red shift occurred because of the particle growth. The microstructure and phase developments were measured by transmission electron microscopy (TEM) and X-ray diffractometry (XRD), respectively.

Changes in Blood Parameters of the Cultured Flounder Paralichthys olivaceus Artificially Infected with Staphylococcus epidermidis (Staphylococcus epidermidis로 인위감염시킨 양식넙치의 혈액지수 변동)

  • Sim, Doo-Saing;Jung, Sung-Hee;Park, Hyung-Sook;Chun, She-Kyu
    • Journal of fish pathology
    • /
    • v.6 no.2
    • /
    • pp.123-131
    • /
    • 1993
  • The cultured flounder(Paralichthys olivaceus) was injected with Staphylococcus epidermidis, various hematological and blood chemical changes were monitored over 96 hours. Red blood cell count, hemoglobin hematocrit. mean corpuscular hemoglobin concentration and mean corpuscular hemoglobin were significantly depressed after 24 to 48hours. Total protein, albumin, globulin and total cholestrol were significantly increased by the 24 or 48 hours, Glucose, bilirubin and transaminase were significantly depressed by 24 to 48hours. Erythrocytes were gotten shorter with round-shaped after 48hours inoculated with S. cpidermidis. Hemolytic erythrocytes and neutrophils were showed after 72hours inoculated with S. epidermidis. Price-Jones curve was transformed for left shift after 48hours inoculated with S. epidermidis, therfore staphylococcia appeared hemolytic anemia in the artificially infection.

  • PDF

Photocatalytic Activity of Hierarchical N doped TiO2 Nanostructures

  • Naik, Brundabana;Kim, Sun Mi;Jung, Chan Ho;Park, Jeong Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.669-669
    • /
    • 2013
  • Hierarchical N doped TiO2 nanostructured catalyst with micro, meso and macro porosity have been synthesized by a facile self-formation route using ammonia and titanium isopropoxide precursor. The samples were calcined in different calcination temperature ranging from $300^{\circ}C$ to $800^{\circ}C$ at slow heating rate ($5^{\circ}C$/min) and designated as NHPT-300 to NHPT-800. $TiO_2$ nanostructured catalyst have been characterized by physico-chemical and spectroscopy methods to explore the structural, electronic and optical properties. UV-Vis diffuse reflectance spectra confirmed the red shift and band gap narrowing due to the doping of N species in TiO2 nanoporous catalyst. Hierarchical macro porosity with fibrous channel patterning was observed (confirmed from FESEM) and well preserved even after calcination at $800^{\circ}C$, indicating the thermal stability. BET results showed that micro and mesoporosity was lost after $500^{\circ}C$ calcination. The photocatalytic activity has been evaluated for methanol oxidation to formaldehyde in visible light. The enhanced photocatalytic activity is attributed to combined synergetic effect of N doping for visible light absorption, micro and mesoporosity for increase of effective surface area and light harvestation, and hierarchical macroporous fibrous structure for multiple reflection and effective charge transfer.

  • PDF

Spectrophotometric Determination of Scandium(III) with Eriochrome Cyanine R in the Presence of Cetyltrimethylammonium bromide (Cetyltrimethylammonium bromide에서 Eriochrome Cyanine R에 의한 스칸듐(III)의 분광광도법 정량)

  • Cha, Ki-Won;Park, Chan-Il;Kim, Jong-Whon
    • Analytical Science and Technology
    • /
    • v.9 no.2
    • /
    • pp.139-144
    • /
    • 1996
  • The spectrophotometric determination method of scandium with eriochrome cyanine R(ECR) and the composition ratio of the complex were investigated in the presence of surfactants. The absorbance increase and red shift of maximum adsorption wavelength of Sc(III)-ECR complex were observed in cetyltrimethylammonium bromide (CTMAB), but those changes were not observed in the sodium dodecyl sulfate(SDS) and Triton X-100. A volume of 5ml of $1{\times}10^{-3}M$ ECR and 10ml of $2{\times}10^{-4}M$ CTMAB are necessary for the determination of $1{\times}10^{-7}{\sim}3.0{\times}10^{-6}M$ Sc(III) at pH 6.5. The apparent molar absorption coefficient of the Sc(III)-ECR-CTMAB, temary complex at 610nm is $5.6{\times}10^5mol^{-1}cm^{-1}L$ and its detection limit is $1.0{\times}10^{-7}M$. The binary complex composition of Sc(III)-ECR is 1:2 and the ternary complex composition of Sc(III)-ECR-CTMAB is 1:3:1.

  • PDF

Size and Species Composition of Phytoplankton Related to Anthropogenic Environmental Changes in Doam Bay (인위적 담수 유입에 의한 도암만의 환경변화와 식물플랑크톤 변동)

  • Yang, Eeng-Ryul;Jeong, Byung-Kwan;Lee, Eo-Jin;Ryu, Dong-Ki;Shin, Yong-Sik
    • Journal of Environmental Science International
    • /
    • v.23 no.6
    • /
    • pp.1183-1197
    • /
    • 2014
  • Doam Bay is an estuary where harmful algal blooms (HABs) such as red tides develop frequently in summer. The bay also is influenced by freshwater inflow from Tamjin River in upper regions as well as from an artificial lake in lower regions. Phytoplankton size and species composition were investigated at six stations located in the lower regions in April, June and July, 2007. Physical properties (temperature, salinity and SS) were intensively measured for 3 days (5 occasions) after the freshwater discharges from the dike. The freshwater discharge affected temperature, salinity and turbidity in the study sites adjacent to the freshwater lake. Phytoplankton biomass was larger in April than June and it increased more in July. An explicit shift of species composition was observed. Diatoms were dominant in April and June (>70%) whereas their abundances greatly decreased and chlorophytes increased in July. Pseudo-nitzschia sp. was dominant at all stations (except St. 2) and this change was also detected in ecological indices such as diversity and dominance index.