• Title/Summary/Keyword: Recycling capacity

Search Result 297, Processing Time 0.028 seconds

Co-treatment of Sewage Sludge and Cow Manure by Vermistabilization (Vermistabilization에 의한 하수 슬러지와 가축분뇨의 병합처리)

  • 손희정;김형석
    • Resources Recycling
    • /
    • v.7 no.3
    • /
    • pp.52-57
    • /
    • 1998
  • The objective of this study was to investigate the effect of cow manure as additive material on the ripening of sewage s sludge for vermistabiJization. The changes of the waste properties by ripening for 50days were observed as a function of the v various mixture ratios of sewage sludge ‘and cow manure. The pH values of the mixture wastes decreased from 7.5-7.67 to 6_ 9~7.2 by the ripening for 50days, and the mixture ratio made dIfferent pH values. The initial value of oxidation-reduction p potential (Eh) of the mixture waste was a negative (-) value indicating an unfavorable condition for earthworm after, but the v values of Eh increased with the opening time. The Increase rate at Eh value was prop$\alpha$rtional to the mixture ratio of cow m manure. The value of alkalinity was also changed into the favorable range for earthworm after 50days except for non-use of 1 the cow manure When the mixture ratio of the cow manure increased from 10% to 30%, the growth of earthworms increased h from 63.7% to 88.3 % tor the survival rate, 265% to 321% for the liveweight increasing rate and 66.7_7% to 91% for hatching f rate of the cocoons. It can be concluded that the proper content of tbe cow manure in the sewage sludge to ensure effective v vermistabilization was over 20%, when the mixture was ripened during 50 days. The quantity of ingestion and 며ectian at 20%-30% was found to be O.15--i.L18g sludge and 0 1l--O.14g solid per capacity earthworm per day, respectively.

  • PDF

Adsorption Features of Lead Ion on Waste Undaria pinnatifida (폐기된 해조류를 이용한 납 이온의 흡착 특성)

  • Seo Myung-Soon;Kim Dong-Su
    • Resources Recycling
    • /
    • v.13 no.4
    • /
    • pp.23-31
    • /
    • 2004
  • Basic studies have been conducted regarding the attempt of the utilization of waste Undaria pinnatifida as an adsorbent for the adsorption treatment of lead-containing wastewater. Undaria pinnatifida was found to be chiefly composed of hyo-carbonaceous compounds and have a fairly high specific surface area, which suggesting the possibility of its application as a Potential adsorbent. The electrokinetic Potential of Undaria pinnatifida particles was observed to be negatively highest at around pH 8 and the fact that its electrokinetic potentials are negative at the whole pH range supported it might be an efficient adsorbent especially for cationic adsorbates. Under the experimental conditions, $Pb^{2+}$ was found to mostly adsorb onto Undaria pinnatifida within a few minutes and reach the equilibrium in adsorption within ca. 30 minutes. The adsorption of $Pb^{2+}$ was exothermic and explained well by e Freundlich model. Acidic pretreatment of Undaria pinnatifida enhanced its adsorption capacity for $Pb^{2+}$ , however, the reverse was observed for alkaline pretreatment. The formation of organometallic complex between $Pb^{2+}$ and some functional groups on the surface of Undaria pinnatifida was considered to be one of the main drives for adsorption. Finally the adsorbability of$ Pb^{2+}$ was examined to be rather affected by several solution features such as the coexistence of other adsorbate, the variation of ionic strength, and the concentration of complexing agent.

Design of Counter current Extraction Process for the Separation of [Pr, Nd, Sm]/[La] using Cyanex 572 (Cyanex 572를 사용하여 [Pr, Nd, Sm]/[La]분리에 대한 향류추출공정 설계)

  • Lee, Joo-eun;So, Hong-Il;Jang, In-Hwan;Ahn, Jae-Woo;Kim, Hong-in;Lee, Jin-young
    • Resources Recycling
    • /
    • v.27 no.4
    • /
    • pp.50-56
    • /
    • 2018
  • For the purpose of optimizing the counter current extraction process for separation of [Pr, Nd, Sm] group and [La] in mixed solution using Cyanex 572 as an extractant, the theory of Xu Guangxian was derived for calculating the optimized extraction factors. From the basic batch test result, the separation factor was 16.80 at extraction process and 21.48 at scrubbing process, and the loading capacity of 1.0 M Cyanex 572 was 0.12 M of rare earth element. The process parameters such as the stage number at extraction and scrubbing process, the flow rate ratio of feed and solvent solution can be calculated using an equation of optimum extraction ratio proposed by Xu Guangxian. From the result of calculation, 7 extraction stages and 4 scrubbing stages were required for rare earth separation, and the flow rate ratio of feed solution, solvent solution, scrubbing solution was 25 : 5.67 : 12.27.

A Study on the Remediation using Microbial Activator from Oil-Contaminated Soil (미생물활성화제를 이용한 유류오염토양 복원에 관한 연구)

  • Lee, Chae-Young;Chung, Chan-Kyo;Kim, Jong-Moon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.19 no.2
    • /
    • pp.41-48
    • /
    • 2011
  • In this study, the soil remediation by landfarming was carried out using microbial activators. Feasibility studies and reduction capacity of TPH(Total Petroleum Hydrocarbons) were investigated in order to find out how fast and eco-friendly the contaminated soil can be recovered. The lab-test confirmed not only the performance and degradation efficiency of microbial activators but also the effect of TPH reduction in the contaminated soil. The optimum growth conditions for indigenous microorganisms were identified using microbial activators. Based on the results of TPH removal, although there had been a little of difference in between natural decomposition and microbial activators until 20 days, the sample groups of microbial activators were higher than the control ones after 20 days. Microbial activators were applied to the field experiments on landfarming. Based on the results of removal rate in each floor of soil, it was found that the removal rates were 85.8 % in the upper, 84.4 % in the middle, and 66.10 % in the bottom. Considering that the reduction rate of TPH for the control group averaged 71.1%, the microbial activators might not be fully transferred into the bottom, which resulted from the piles of soil. As the piles have already reached 1 m in the field experiments, the low piles of soil under 0.6 m may enhance the treatment efficiency of TPH.

Biochemical Methane Potential Analysis for Anaerobic Digestion of Marine Algae (해조류의 혐기소화를 위한 메탄생산퍼텐셜 분석)

  • Lee, Jun-Hyeong;Kim, Tae-Bong;Shin, Kook-Sik;Yoon, Young-Man
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.28 no.4
    • /
    • pp.23-33
    • /
    • 2020
  • Marine algae(Macro algae) are easily bio-degradable, and by-products are available as feed and fertilizer. The biomass of marine algae has higher CO2 absorption capacity than the wood system, and is highly valuable in use due to its fast growth speed and wide cultivation area without special cost for raw material production. In 2018, Marine algae production was 1,722,486ton, such as Saccharina japonica, Undaria pinnatifida and Porphyra tenera, the large amounts of by-products have been generated in the food processing facilities for commercialization. In this study, Saccharina japonica, Undaria pinnatifida were collected in the south coast region and Porphyra tenera was collected in the west coast region. The theoretical methane potential and biochemical methane potential(BMP) were analyzed, and Modified Gompertz model and Parallel first order kinetics model were adopted for the interpretation of the cumulative methane production curves. The theoretical methane potential of Saccharina japonica, Undaria pinnatifida and Porphyra tenera were 0.393, 0.373 and 0.435 N㎥/kg-VS, respectively. BMP obtained by the Modified gompertz model 0.226, 0.227, and 0.241 N㎥/kg-VS for Saccharina japonica, Undaria pinnatifida and Porphyra tenera, respectively. And BMP obtained by the Parallel first order kinetics model were 0.220, 0.243, and 0.240 N㎥/kg-VS for Saccharina japonica, Undaria pinnatifida and Porphyra tenera, respectively.

Estimation of Anaerobic Co-digestion Efficiency of Dewatered Sludge and Food waste using Thermo-Chemical Pre-Treatment (열화학적 전처리에 따른 탈수슬러지 및 음식물류폐기물의 병합혐기소화 효율 평가)

  • Lee, Wonbae;Park, Seyong
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.30 no.4
    • /
    • pp.27-40
    • /
    • 2022
  • In this study, the anaerobic digestion potential and thermo-chemical pre-treatment were evaluated for efficient anaerobic co-digestion of dewatered sludge(DS) and food waste(FW). As a result, the degradable organic matter concentration and methane yield of FW were evaluated to 2.2 and 1.3 times higher than that of DS, respectively. In order to increase the amount of biogas production, it was determined that it is desirable to increase the mixing ratio of FW. The efficiency of thermo-chemical pre-treatment was evaluated for the reaction temperature, NaOH concentration, reaction time and mixture ratio. As a result of evaluation through pre-treatment efficiency and dehydration capacity, the optimum pre-treatment conditions were evaluated as follows: reaction temperature 140℃, NaOH concentration 60 meq/L, reaction time 60 min, mixture ratio 1:5(DS:FW). The gas production rate and methane yield increased 1.6 and 1.5 times, respectively, compared to before and after applying the optimum pre-treatment. Therefore, it is necessary to increase the mixing ratio of food waste for efficient anaerobic co-digestion of DS and FW. and it is necessary to increase the solubilization efficiency of waste by application of pre-treatment.

Reviews on an Improvement and Measurement of the Hydrophobicity for Carbon Materials (탄소재료의 소수성 향상 방법 및 측정 방법에 대한 고찰)

  • Kang, Yu-Jin;Kim, Yu-Jin;Jang, Min-Hyeok;Jo, Hyung-Kun;Yoon, Seong-Jin;Han, Gyoung-Jae;Cho, Hye-Ryeong;Seo, Dong-Jin;Park, Joo-Il
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.30 no.4
    • /
    • pp.41-50
    • /
    • 2022
  • Recently, research on carbon adsorbents has been active as an interest in improving the environment such as indoor and outdoor air quality. Considering that causative substances deteriorate the air quality are basically volatile organic compounds, it is important to improve the hydrophobicity of the carbon materials for better removal efficiency. This study presents a method for improving hydrophobicity of carbon and a measurement of the hydrophobicity. Generally, methods of improving the hydrophobicity of carbon materials are heat treatment, acid/alkali treatment, coating and immersion with hydrophobic materials. However, it collapses the pore structure and reduces the adsorption capacity. Therefore, this study briefly introduce not only the general method for improving carbon materials' hydrophobicity but also the method for converting the precursor of the material is briefly introduced. Futhermore, this study introduces a analytical technique used to determine hydrophobic modification or not, and aims to enhance the understanding of carbon materials.

Enhanced Removal Efficiency of Low-Concentration Cesium Ion in Water Phase by Using Petroleum Residue Pitch (석유계 잔사유 피치를 이용한 수중에서 저농도 세슘 이온의 제거효율 향상)

  • Choi, Tae Ryeong;Ha, Jeong Hyub;Choi, Suk Soon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.29 no.4
    • /
    • pp.25-31
    • /
    • 2021
  • In this research, in order to effectively utilize the petroleum residue pitch, it was used as an adsorbent for removal of cesium ion. In this experiment, acid modification (hydrochloric acid, sulfuric acid) treatment was performed on the adsorbent to improve the ability to remove low-concentration cesium ions dissolved in water. As a result, when the reaction was performed with 9 M sulfuric acid at 25 ℃ and for 240 min, the removal efficiencies of 1.0 and 2.5 mg/L cesium ions were 66 and 51%, respectively. In addition, as the adsorption time increased in the batch experiment, the removal capacity of 1.0 and 2.5 mg/L cesium ions was improved, and when the adsorption reached for 32 hr, the removal efficiencies were 72 and 68%, respectively. Also, in order to increase the ability to remove the remaining cesium ions, an experiment was performed by temperature change (25, 37, 49 ℃), and 1.0 and 2.5 mg/L cesium ions contained in water under the operating conditions of 49 ℃ and 32 hr showed removal efficiencies of 90 and 81%, respectively. Consequently, these experimental results were intended to be used as an adsorption technology that can economically treat low-concentration cesium ions contained in water.

Synthesis of Various Biomass-derived Carbons and Their Applications as Anode Materials for Lithium Ion Batteries (다양한 바이오매스 기반의 탄소 제조 및 리튬이온전지 음극활물질로의 응용)

  • Chan-Gyo Kim;Suk Jekal;Ha-Yeong Kim;Jiwon Kim;Yeon-Ryong Chu;Hyung Sub Sim;Chang-Min Yoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.3
    • /
    • pp.27-34
    • /
    • 2023
  • In this study, various plant-based biomass are recycled into carbon materials to employ as anode materials for lithium-ion batteries. Firstly, various biomass of rice husk, chestnut, tea bag, and coffee ground are collected, washed, and ground. The carbonization process is followed under a nitrogen atmosphere at 850℃. The morphological and chemical properties of materials are investigated using FE-SEM, EDS, and FT-IR to compare the characteristic differences between various biomass. It is noticeable that biomass-derived carbon materials vary in shape and degree of carbonization depending on their precursor materials. These materials are applied as anode materials to measure the electrochemical performance. The specific capacities of rice husk-, chetnut-, tea bag-, and coffee ground-derived carbon materials are evaluated as 65.8, 80.2, 90.6, and 104.7 mAh g-1 at 0.2C. Notably, coffee ground-based carbon exhibited the highest specific capacity owing to the difference in elemental composition and the degree of carbonization. Conclusively, this study suggests the possibility of utilizing as energy storage devices by employing various plant-based biomass into active materials for anodes.

The characteristics of aqueous ammonium-adsorption of biochar produced from Sudangrass (수단그라스 Biochar를 적용한 수중 암모니아성 질소(NH4-N) 흡착 특성)

  • Doyoon Ryu;Do-Yong Kim;Daegi Kim
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.2
    • /
    • pp.63-71
    • /
    • 2023
  • Increased nitrogen in the water system has become an important environmental problem around the world, as it causes eutrophication, algae bloom, and red tide, destroys the water system, and undermines water's self-purification. The most common form of nitrogen in the water system is ammonium ion (NH4+), and the largest portion of ammonium ions comes from wastewater. NH4+ is a major contributor to eutrophication, which calls for appropriate treatment and measures for ammonium removal. This study produced biochar by applying Sorghum × drummondii, a type of biomass with a great growth profile, analyzed the adsorption capacity of Sorghum × drummondii biochar produced from the changing carbonization temperature condition of 200 to 400℃ in the ammonium ion range of 10 to 100 ppm, and used the results to evaluate its potential as an adsorbent. Carbonization decomposed the chemical structure of Sorghum × drummondii and increased the content of carbon and fixed carbon in the biochar. The biochar's pH and electrical conductivity showed high adsorption potential for cations due to electrical conductivity as its pH and electrical conductivity increased along with higher carbonization temperature. Based on the results of an adsorption experiment, the biochar showed 54.5% and 17.4% in the maximum and minimum NH4-N removal efficiency as the concentration of NH4-N increased, and higher carbonization temperature facilitated the adsorption of pollutants due to the biochar's increased pores and specific surface area and subsequently improved NH4-N removal efficiency. FT-IR analysis showed that the overall surface functional groups decreased due to high temperature from carbonization.