DOI QR코드

DOI QR Code

Design of Counter current Extraction Process for the Separation of [Pr, Nd, Sm]/[La] using Cyanex 572

Cyanex 572를 사용하여 [Pr, Nd, Sm]/[La]분리에 대한 향류추출공정 설계

  • Lee, Joo-eun (Department of Advanced Materials Sci. & Eng., Daejin University) ;
  • So, Hong-Il (Department of Advanced Materials Sci. & Eng., Daejin University) ;
  • Jang, In-Hwan (Department of Advanced Materials Sci. & Eng., Daejin University) ;
  • Ahn, Jae-Woo (Department of Advanced Materials Sci. & Eng., Daejin University) ;
  • Kim, Hong-in (Covergence Research Center for Development of Mineral Resources (DMR) Korea Institute of Geoscience and Mineral Resources) ;
  • Lee, Jin-young (Covergence Research Center for Development of Mineral Resources (DMR) Korea Institute of Geoscience and Mineral Resources)
  • 이주은 (대진대학교 신소재공학과) ;
  • 소홍일 (대진대학교 신소재공학과) ;
  • 장인환 (대진대학교 신소재공학과) ;
  • 안재우 (대진대학교 신소재공학과) ;
  • 김홍인 (한국지질자원연구원 DMR융합연구단) ;
  • 이진영 (한국지질자원연구원 DMR융합연구단)
  • Received : 2018.07.26
  • Accepted : 2018.08.20
  • Published : 2018.08.31

Abstract

For the purpose of optimizing the counter current extraction process for separation of [Pr, Nd, Sm] group and [La] in mixed solution using Cyanex 572 as an extractant, the theory of Xu Guangxian was derived for calculating the optimized extraction factors. From the basic batch test result, the separation factor was 16.80 at extraction process and 21.48 at scrubbing process, and the loading capacity of 1.0 M Cyanex 572 was 0.12 M of rare earth element. The process parameters such as the stage number at extraction and scrubbing process, the flow rate ratio of feed and solvent solution can be calculated using an equation of optimum extraction ratio proposed by Xu Guangxian. From the result of calculation, 7 extraction stages and 4 scrubbing stages were required for rare earth separation, and the flow rate ratio of feed solution, solvent solution, scrubbing solution was 25 : 5.67 : 12.27.

추출제로 Cyanex 572를 사용하여 혼합 용액에서 [Pr, Nd, Sm]그룹과 [La]을 분리하기 위하여 Xu Guangxian이 제시한 이론에 의하여 향류추출 공정의 최적 추출 공정 변수를 계산하고자 하였다. 기초실험으로부터 두 그룹의 최적 분리계수는 추출 공정의 경우 16.80, 세정공정에서는 21.48 이었고, 1.0 M Cyanex 572에 의한 희토류 성분의 추출용량은 0.12 M 이었다. 공정 개발에 필요한 추출 단수, 세정 단수, 유량비 등에 대하여 최적 추출비 이론에 의해 계산하였다. 계산 결과 두 그룹의 희토류 분리에 필요한 단수는 추출 7단 및 세정 4단이며, 원료용액, 추출용액 및 세정용액의 유량비는 25 : 5.67 : 12.27 이었다.

Keywords

References

  1. Kim, J. H., 2015 : A Case Study on the Dispute of Export Restrictions for China-Rare Earth, J. of Korea Trade, 40(1), pp.89-108.
  2. Koh, S. M., 2009 : Situation of the Supply-demand and Potentiality of REE Resources in South Korea, J. Miner. Soc. Korea, 22(4), pp.417-422.
  3. Kim, T. S. et al., 2014 : Status of Rare earth industry, Trends in Metals & Materials Engineering, 27(1), pp.8-16.
  4. Lee, J. Y. et al., 2005 : Calculation of parameter for solvent extraction process by theory of optimum extraction ratio, Proceedings of the Korean Inst. of Resources Recycling Conference, 26, pp.298-303, The Korean Inst. of Resources Recycling, Changwon Univ., Korea, 14-15 October.
  5. Yang, H., et al., 2015 : Component content distribution profile control in rare earth countercurrent extraction process, Chinese J of Chemical Engineering, 23, pp.192-198. https://doi.org/10.1016/j.cjche.2014.09.046
  6. Guangxian, X. and Jimel, X., 1985 : New frontiers in Rare Earth Science and Application, Elsevier, Beijing.
  7. Guangxian, X., 1995 : The Rare Earth, Metallurgical Industry Press of China, Beijing.
  8. Lee, J. E. et al., 2018 : Comparison of Counter Current Extraction Process of Pr & Nd Separation using Cyanex 572 and PC88A, Korean J. Met. Mater., 56(8), pp.597-604. https://doi.org/10.3365/KJMM.2018.56.8.597
  9. Cho, Y. C., Kang, M. S., Ahn, J. W., and Lee, J. Y., 2016 : Solvent Extraction of Rare Earth Elements (La, Ce, Pr, Nd, Sm) from Hydrochloric Acid Solutions using Cyanex 572, J. of Korean Inst. of Resources Recycling, 25(6), pp.50-57. https://doi.org/10.7844/KIRR.2016.25.6.50
  10. Cho, Y. C. et al., 2017 : Extraction & Separation Behavior of Light Rare Earth Elements from the Mixed Solutions by Cyanex 572, J. of Korean Inst. of Resources Recycling, 26(4), pp.79-87. https://doi.org/10.7844/KIRR.2017.26.4.79
  11. Cho, Y. C. et al., 2018 : Comparison of the Extraction and Separation Behavior of La, Ce, Pr, Nd, Sm from Light Rare Earth Mixed Solutions by PC88A and Cyanex 572, Korean J. Met. Mater., 56(2), pp.146-154.
  12. Cho, Y. C. 2017 : A Study of Solvent Extraction Behavior of Light Rare Earth(La, Ce, Pr, Nd, Sm) Using Cyanex 572 in Hydrochloric Acid Solution, M.S Thesis, Daejin University, Korea.
  13. Gupta, C. K. and Krishnamurthy, N., 2004 : Extractive Metallurgy of Rare Earths, pp.172-173 CRC Press, Florida.
  14. Yoon, H. S. et al., 1998 : Decomposition and leaching of bastnasite by sulfation and recovery of cerium hydroxide from leached solution, J. of Korean Ind 7 Eng. Chemistry, 9(3), pp.407-412.
  15. Kim, S. D. et al., 2002 : Recovery of cerium and removal impurity from leached-solution of monazite, Theories and Applications of Chem. Eng., 8(2), pp.3801-3804.
  16. Kremser, A., 1930 : Theoretical analysis of absorption process, National Petroleum News, 22(21), pp.43.
  17. Alders, L., 1959 : Liquid-Liquid Extraction, Elsevier, Amsterdam.
  18. Banda, R., Jeon, H. S., and Lee, M. S., 2012 : Solvent extraction separation of Pr and Nd from chloride solution containing La using Cyanex 272 and its mixture with other extractants, Separation and Purification Technology, 98, pp.481-487. https://doi.org/10.1016/j.seppur.2012.08.015