• Title/Summary/Keyword: Recycled waste concrete

Search Result 425, Processing Time 0.025 seconds

Durability and Strength of Dense Grate Permeable Concrete Using Silica sand and Flexible Alkyd Resin (유변성(油變性) 알키드 수지(樹脂)와 규사(硅砂)를 사용(使用)한 밀입도(密粒度) 투수(透水)콘크리트의 강도(强度) 및 내구특성(耐久特性))

  • Kim, In-Jung;Hong, Chang-Woo
    • Resources Recycling
    • /
    • v.19 no.6
    • /
    • pp.36-42
    • /
    • 2010
  • Researches on resources recycling in the field of construction have made an extensive progress such as recycled aggregate of waste concrete and recycling of asphalt. On the other hand, there are almost never researches on pavement method with used waste frying oil. In South Korea, 0.2 million ton used waste frying oil is discharged every year. It is guessed that about 0.1 million ton used waste frying oil can be collected. If used waste frying oil is recycled, it is expected that disuse cost will be reduced and water pollution of rivers will be prevented. Therefore, the purpose of the study was to evaluate on mechanical features (strength, water resistance, chemical resistance, abrasion resistance, freezing and thawing resistance and permeable coefficient) whether dense graded permeable concrete mixing silica sand with flexible alkyd resin manufactured by making ester reaction with collected used waste frying oil to make alkyd resin could be applied to road pavement for non-roadway. The results of the study were as follows. In flexural strength, it had 1.6 times as much as road design standard 4.5MPa. In water resistance, chemistry resistance and freezing and thawing resistance, they had lack of strength in early age. As age went by, they didn't have large changes. And curing temperature had phenomenon of increase in strength at rather low temperature than high temperature by glass transition temperature of resin. Therefore, considering workability, strength and durability when it was applied to road pavement, it was reasonable that the mixing ratio of flexible alkyd resin was 10~15% in comparison with silica sand weight.

Autogenous Shrinkage and Engineering Properties of the High Strength Concrete Using Soybean and Waste Edible Oil (식물성 유지 및 폐식용유를 사용한 고강도 콘크리트의 자기수축 및 공학적 특성)

  • Han, Min-Cheol;Lee, Dong-Gyu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.3
    • /
    • pp.110-117
    • /
    • 2011
  • This study investigated possibilities for a new reducing shrinkage method of soybean oil(SO) and waste oil(WO) to compare with shrinkage reducing agent(RS) and expansion additive(EA). There was no big difference to flow, air contents, and compressive strength of plain to use SO and WO. For the reducing shrinkage performance, SO and WO was more effective than RS and EA, because their fatty acid reacted with calcium hydroxide of concrete to turn soap. For the pore distribution by porosimter, $0.01{\sim}0.1{\mu}m$ pores of SO and WO were 0 ml/g, and $10{\sim}100{\mu}m$ also remarkably lower than any others. In these results, it inferred that they filled up capillary pore and mitigated autogenous shrinkage by their saponification of their fatty acid and calcium hydroxide.

  • PDF

The quality properties of PHC pile using waste pottery powder as cement admixture (폐도자기분말을 시멘트 혼합재로 사용한 PHC파일의 품질 특성)

  • Lee, Hwa-Young;Jeon, Sung-Hwan;Mun, Kyoung-Ju;So, Seung-Young;Soh, Yang-Seob
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.881-884
    • /
    • 2008
  • Nowadays, large amount of waste pottery annually are produced. It is needed that waste pottery is to are used as recycle materials in order to prevent environmental pollution and economic profits. Therefore, the purpose of this study is to present the method of utilizing the cement admixture that is obtained from waste pottery as the cement admixture. The test results that the replacement of waste pottery powder by cement admixture at the level 5%, 7% had effect on the compressive strength of the PHC pile. As a conclusion, improved strength recycled(waste pottery powder) PHC pile can be produced of cement admixture.

  • PDF

Optimization of Recycled Wastepaper Fiber Reinforced-Cement Composite (폐지섬유보강 시멘트 복합체의 최적배합비 결정에 관한 연구)

  • 원종필;배동인
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.671-676
    • /
    • 2000
  • This study was to determine the technical feasibility of using wastepaper fibers, obtained through dry processing of wastepaper, as reinforcement in thin cement produces. Dry-processed waste papers have high levels of noncellulosic impurities, and the recycling process also breads and damages the fibers. To produce wastepaper fiber-cement composites, first the influential variables in the slurry-dewatering method of processing the composites were identified in an experimental study based on factorial design. Among the proportioning and processing variables investigated, fiber mass fraction and level of substitution of virgin fibers with recycled ones were found to have statistically significant effects on mechanical and physical properties of composites. Subsequently, response surface analysis techniques were used to devise an experimental program that helped determine the optimum combinations of the selected influential variables based on mechanical and physical properties, and cost.

  • PDF

Heating Transferring Charcteristics of Cement Mortar Block with Waste CNT and Conduction Activator (폐CNT와 전도촉진재를 혼입한 시멘트 모르타르 블록의 발열 전도 특성)

  • Koo, Hounchul;Kim, Woon-Hak;Oh, Hongseob
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.2
    • /
    • pp.176-183
    • /
    • 2022
  • High-purity waste CNTs were mixed into cement mortar to manufacture heat-generating concrete that can use low voltage power, and carbon fiber and waste cathode materials were also used improve the conductivity of the mortar. The waste CNTs were analyzed to have a high concentration of multi-walled CNTs, and substituted liquid type waste CNTs were used during mortar mixing in order to increase dispersibility. The temperature change of the mortar with CNT was evaluated when using electric power below DC 24 V in order to utilize a small self-generation facility such as small solar power module when the mortar heats up and to minimize electromagnetic waves. When liquid-type waste CNTs were applied and a voltage of DC 24 V was introduced, it rose to 60 ℃ in a 200 × 100 × 50 mm mortar block specimen. The field applicability of self heating mortar with waste CNT was sufficient and also the amount of change in heat energy in mortar with liquid type waste CNT, carbon fiber and waste cathode materials is more effective compared to it of other variables.

Radiological safety evaluation of dismantled radioactive concrete from Kori Unit 1 in the disposal and recycling process

  • Lee, ChoongWie;Kim, Hee Reyoung;Lee, Seung Jun
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.2019-2024
    • /
    • 2021
  • For evaluating the radiological safety of dismantled concrete, the process of disposal and recycling of the radioactive concrete generated during the dismantling of Kori Unit 1 is analyzed. Four scenarios are derived based on the analysis of the concrete recycling and disposal process, and the potential exposure to the workers and public during this process are calculated. VISIPLAN and RESRAD code are used for evaluating the dosages received by the workers and public in the following four scenarios: concrete inspection, transport of concrete by the truck driver, driving on a recycled concrete road, and public living near the landfilled concrete waste. Two worker exposure scenarios in the processing of concrete and two public exposure scenarios in recycling and disposal are considered; in all the scenarios, the exposure dose does not exceed the annual dose limit for each representative.

Recent Status on the Recycling of Construction Waste and Research Trends - The Current Situation of Recycling Technology for Waste Resources in Korea(4) - (건설폐기물(建設廢棄物)의 리싸이클링 현황(現況)과 연구동향(硏究動向) - 국내자원(國內資源)의 유효이용(有效利用)을 위한 처리(處理) 및 회수기술동향(回收技術動向)(4) -)

  • Oh, Jae-Hyun;Kim, Mi-Sung;Shin, Hee-Duck;Min, Ji-Won
    • Resources Recycling
    • /
    • v.17 no.2
    • /
    • pp.16-29
    • /
    • 2008
  • According to the statistical data of the Ministry of Environment, 47million tons of construction waste were generated, and 96.7% of them was recycled in 2005. However, the recycled products seem to be remained under low quality. Because mixed demolition and construction waste, so called DC Waste, including concrete, brick, plaster, lumber, plastics building materials, paper and some dirt and stone, is very variable and difficult to estimate its exact composition, it is regarded as having little or no value to the construction industry. 'The Research group on recycling of construction waste' was started by the Housing & Urban Research Institute(KNHC), which is sponsored as a large scale national project by the Ministry of Construction and Transportation. This research group intends to establish recycling system through planing, processing, developing practical technology, and eventually contribute to save natural resource and to vitalize the industry. In this paper an overview of DC waste management and recycling technology is given in some detail. Particularly, "recycling law of construction waste" and recent research trends on recycling of construction waste are discussed.

Evaluation of Rheological Properties and Acceptance Criteria of Solidifying Agents for Radioactive Waste Disposal Using Waste Concrete Powder (폐콘크리트를 재활용한 방사성 폐기물용 고화제의 레올로지 특성 및 인수기준 특성평가)

  • Seo, Eun-A;Kim, Do-Gyeum;Lee, Ho-Jea
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.3
    • /
    • pp.276-284
    • /
    • 2022
  • In this study, performance evaluation and rheological characteristics were analyzed for recycling the fine powder of nuclear power plant dismantled waste concrete as a solidifying agent for radioactive waste disposal. The radioactive concrete fine powder was used to prepare a simulated sample, and the test specimen was prepared using Di-water, CoCl2, and 1 mol CsCl aqueous solution as mixing water. Regardless of the aggregate mixing ratio and the type of mixing water, it satisfies the performance standard of 3.45 MPa for compressive strength at 28 days of age. All specimens satisfied the criteria for submersion strength, and the thermal cycle compressive strength satisfies the criteria for all specimens except Plain-50. As a result of evaluating the rheological properties of the solidifying agent, it was found that the increase in the aggregate mixing rate decreased the yield stress and plastic viscosity. The leaching index for cobalt and cesium of all specimens was 6 or higher, which satisfies the standard. In order to secure the stable performance of the solidifying agent, it is considered effective to use 40 % or less of the aggregate component in the solidifying agent.

Research on the Production of CO2 Absorbent Using Railway Tie Concrete Waste (콘크리트 철도 침목 폐기물을 활용한 CO2 포집제 제조 연구)

  • Gyubin Lee;Jae-Young Lee;Hyung-Jun Jang;Sangwon Ko;Hye-Jin Hong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.3
    • /
    • pp.260-266
    • /
    • 2023
  • In recent years, excessive emissions of carbon dioxide(CO2) have become the cause of global climate change. Consequently, there has been significant research activity aimed at both removing and utilizing CO2. This study assesses the potential utilization of railway tie concrete waste, generated from railway infrastructure, as a CO2 absorption material and investigates the physicochemical properties before and after CO2 absorption to understand the CO2 removal mechanisms. Railway tie concrete waste primarily consists of Si(26.60 %) and contains 9.82 % of Ca. Compared to samples of Cement and Normal concrete waste, it demonstrated superior potential for use as a CO2 absorption material, with approximately 98 % of the Ca content participating in CO2 absorption reactions. Through Thermogravimetric Analysis(TGA) and X-ray Diffraction(XRD) analysis, it was confirmed that the carbonate reaction, where the Ca in railway tie concrete waste converts into CaCO3 through reaction with CO2 gas, is the primary mechanism for CO2 removal. Furthermore, Scanning Electron Microscopy(SEM) analysis revealed the formation of numerous CaCO3 particles with sizes less than 0.1 ㎛ after the CO2 absorption reaction. This transformation of large internal voids in the CO2 absorption material into mesopores resulted in an increase in the specific surface area of the material.