• Title/Summary/Keyword: Recycled mortar

Search Result 369, Processing Time 0.031 seconds

Influence of the Quality of Recycled Aggregates on Microstructures and Strength Development of Concrete

  • Moon Dae-Joong;Moon Han-Young;Kim Yang-Bae
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.6 s.84
    • /
    • pp.875-881
    • /
    • 2004
  • The quality of recycled aggregate is affected by original concrete strength and the manufacturing process of recycled aggregates. In this study, the porosity of old and new mortar, and the compressive strength of concrete were investigated to examine the influence of recycled aggregate on the concrete. Six kinds of recycled coarse aggregates were produced from concrete blocks of differing strength levels (A:60. 1MPa, B:41.7MPa, C:25.5MPa). Original concrete strength and the bond mortar of recycled aggregate influences the pore structures of both old and new mortar. The pore size distribution of old mortar was found to be greatly affected by age, and the reduction of the porosity of bond mortar on low strength recycled aggregate increased at a greater rate than that of bond mortar on high strength recycled aggregate. The pore size distribution of new mortar in recycled aggregate concrete changed in comparison with that of new mortar in virgin aggregate concrete. The total porosity of new mortar using B level recycled aggregates was smaller than that of new mortar with A, and C level recycled aggregates. Moreover, the compressive strength of recycled aggregate concrete was found to have been affected by original concrete strength. The compressive strength of concrete only changed slightly in the porosity of new mortar over $15\%$, but increased rapidly in the porosity of new mortar fewer than $15\%$.

The Effect of the Residual Mortar of Recycled Concrete Aggregate on Alkali Silica Reaction (순환/재생골재의 잔류 모르타르 성분이 알칼리 실리카 반응성에 미치는 영향 평가)

  • Kim, Jeonghyun;Kim, Namho;Yang, Sungchul
    • International Journal of Highway Engineering
    • /
    • v.17 no.4
    • /
    • pp.19-24
    • /
    • 2015
  • PURPOSES : The objective of this study is to evaluate the effect of the residual mortar of recycled concrete aggregate on the expansion behavior during alkali silica reaction (ASR). METHODS: In order to evaluate the net effect of residual mortar on ASR expansion behavior, two aggregate samples with the same original virgin aggregate source but different residual mortar volumes were used. ASTM C1260 test was used to evaluate the ASR expansion behavior of these two aggregates and the original virgin aggregate. RESULTS: The greater the amount of residual mortar in recycled concrete aggregates, the less is the induced ASR expansion. Depending on the amount of residual mortar in recycled concrete aggregate, the ASR expansion of recycled concrete aggregate may be less than half of that of the original virgin aggregate. CONCLUSIONS: The residual mortar of recycled concrete aggregate may lead to the under estimation of the ASR expansion behavior of the original virgin aggregate.

The Effect on the Properties of Recycled Aggregate Mortar with the Qualites of Waste Concrete (페콘크리트의 품질이 재생모니터의 특성에 미치는 영향)

  • 김효구;김기철;신동인;한천구;박복만
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.392-397
    • /
    • 1998
  • In this paper, the properties of cement mortar used recycled aggregate are analyzed and compared with river and crushed sand mortar. Recycled aggregates are made by crushing wasted concrete had various compressive strength, and test items are the properties of fresh mortar, hardened mortar and durability. According to the experimental results, flow, unitweight, strength and durability of cement mortar used recycled aggregates decrease compared with those of river and crushed sand mortar.

  • PDF

The Strength Properties of Latex-Modified Mortar using Recycled Fine Aggregate (순환잔골재를 사용한 라텍스 개질 모르타르의 강도 특성)

  • Lee, Won-Young;Lee, Dae-Gun;Han, Sang-Il;Kwak, Eun-Gu;Kim, Jae-won;Kim, Jin-Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.11a
    • /
    • pp.179-182
    • /
    • 2009
  • Concrete containing styrene-butadiene latex is widely used, nowadays, as a protective system for bridge. Latex modification mortar have taken advantage of latex modification concrete advantage that is used in existing, Also, when repair, protection and sticking performance of concrete overlay waterproof agent were known as that are good. Replace and experimented from fine aggregate to recycled aggregate to secure economic performance than existing latex modification concrete. Recycled fine aggregate has low quality because it contains large amount of old mortar. So, its usage is limited to a lower value-add, such as the roadbed material etc. This study is purposed to improve the performance of mortar made of recycled fine aggregate. For this, recycled aggregate mortar was produced with latex, and fluidity, strength were examined. Test result indicate that mortar using recycled fine aggregate is higher compressive and flexural strength than mortar using river sand.

  • PDF

A Study on the Properties of Mortar with Recycled Fine Aggregate (순환잔골재를 사용한 모르타르의 제물성에 관한 실험적 연구)

  • Moon, Dae-Joong;Choi, Jae Jin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.1
    • /
    • pp.96-100
    • /
    • 2009
  • The properties of recycled fine aggregates which had different source concrete were examined by mortar test. With higher strength of source concrete, specific gravity of recycled fine aggregate was higher and absorption of recycled fine aggregate was lower due to reduction of the volume of adhered cement paste. The compressive strength and flexible strength of mortar with recycled fine aggregate were affected by the interface boundary of new mortar and the strength of adhered mortar. Strength development of mortar with recycled fine aggregate reduced because recycled fine aggregate become a porous material with the smaller strength of source concrete. The drying shrinkage of mortar was about$800{\sim}2000{\mu}m/m$. It was about 1.5 times than that of mortar with natural fine aggregate. Relative dynamic modulus of elasticity was a similar level with that of mortar with natural fine aggregate.

  • PDF

An Experimental Study on the Quality Estimation of the Mortar using High-Quality Recycled Sand Producted from the Manufacturing System by Wet Gravity Separation (습식비중분리시스템에서 생산된 고품질 순환모래를 사용한 모르타르의 품질평가에 관한 실험적 연구)

  • Lee, Ji-Hwan;Rho, Hyoung-Nam;Lee, Jong-suk;Lee, Sang-Soo;Song, Ha-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.05a
    • /
    • pp.103-107
    • /
    • 2008
  • This study was to execute the experiment for analyzing the quality characteristics of mortar by type of recycled sand by using the recycled sand produced by the manufacturing system by wet gravity separation in order to develop the removal device of impurities for the production of high-quality recycled sand. As a result, this study has sown that the mortar using the high-quality recycled sand through the manufacturing system by wet gravity separation in the fluidity property, strength property, and shrinkage property largely, compared with the mortar using low-quality recycled sand that not passed the device of sand flux. There was a tendency similar to the plane mortar. In conclusion, it was considered as various quality performances of the recycled sand were improved through the production stage of prototype.

  • PDF

A Study on the Recycled Fine Aggregate and Properties of Mortar by the Acid Treatment (산처리에 의한 순환잔골재의 품질과 모르타르의 특성에 관한 연구)

  • Kim Ha-Suk;Sun Joung-Soo;Kawg Eun-Gu;Han Ki-Suk;Lee Do-Heune;Kim Jin-Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.05a
    • /
    • pp.81-84
    • /
    • 2006
  • This study is intended for how to utilize the recycled fine aggregate which is produced by concrete wastes. It analyzes the quality of the fine aggregate which is reproduced through the acid treatment process, and comprehends the characteristics of mortar using the recycled fine aggregate to review whether it can be put to practical use for concrete. The conclusion of the study are as follows 1. The recycled fine aggregate through the acid treat shows the low rate of absorption and high density. 2. Compared to the mortar made from acid liquid precipitated recycled fine aggregate, using nature water precipitated one reduces the flow. 3. The compressive strength of mortar using recycled fine aggregate tends to be reduced according to the kind of precipitated water. Based on the above results, the recycled fine aggregate through the acid treatment process satisfies the quality standards of the first-grade recycled fine aggregate of KS F 2573 (recycled fine aggregate for concrete) but it is concluded that the recycled fine aggregate through the acid treatment process can not used as fine aggregate used concrete because it has destructive characteristics when the mortar is produced

  • PDF

A Study on the Physical Properties of Recycled Fine Aggregate (by Dry and Wet Type Production formula) Mortar Using Blast Furnace Slag (고로슬래그를 사용한 건식 및 습식 재생 잔골재 모르타르의 물리적 특성에 관한 연구)

  • Shim, Jong-Woo;Lee, Sea-Hyun;Seo, Chi-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.501-504
    • /
    • 2006
  • Recycled aggregate mortar contains plenty of calcium hydroxide to improve the strength of blast furnace slag, although the surface mortar made of recycled aggregate deteriorates adhesion to cement paste and blast furnace slag has a low initial strength. Therefore, this study assumes that the combination with both recycled aggregate and blast furnace slag will produce a better performance. The results of the experiment show that dry mortar made of recycled aggregate provides with higher strength than wet mortar does at the 3-day and 7-day age, while lower at the 28-day age. It indicates that a large amount of cement mortar made of dry recycled aggregate has deteriorated adhesion strength. The mixes with 30% and 50% of blast furnace slag and 50% and 75% of recycled aggregate provide with much better strength at the 7-day age, although they usually have latent hydraulic property at the 28-day age. It indicates that calcium hydroxide($Ca(OH){_2}$) in recycled aggregate has affected ground granulated blast furnace slag.

  • PDF

Hydration Analysis of Fine Particle and Old Mortar Attached on the Surface of Recycled Aggregate

  • Ko, Dong-Woo;Choi, Hee-Bok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.5
    • /
    • pp.460-467
    • /
    • 2012
  • When recycled aggregate with old mortar and particles is used in concrete mixing, such aggregates can affect hydration reaction by promoting or inhibiting it. In this study, the possibility of hydration reaction on old mortar and particle was analyzed. Hydration reaction was carried out in old mortar that is finely crushed by an impact machine in the production of recycled aggregates, and it was found that this did have an impact on the strength development of concrete. Unlike in old cement, the hydration reaction did not progress in the particles, and it had high amounts of silica powder and calcium carbonate. In conclusion, the old mortar can have the influence of improving compressive strength, but the particles can delay the setting time of recycled aggregate concrete.

The Properties of Mortar Mixtures Blended with Natural, Crushed, and Recycled Fine Aggregates for Building Construction Materials

  • Yu, Myoung-Youl;Lee, Jae-Yong;Chung, Chul-Woo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.1
    • /
    • pp.73-86
    • /
    • 2012
  • In this research, the possible applicability of mixture blended with natural, crushed, and recycled fine aggregate are discussed. The fresh and hardened properties of mortar using blended fine aggregates are monitored depending on various blending ratio of fine aggregates. Newly developed ternary diagram was also utilized for better interpretation of the data. It was found that air content increased and unit weight decreased as recycled fine aggregate content increased. With moisture type processing of recycled fine aggregate, the mortar flow was not negatively affected by increase in the recycled fine aggregate content. The ternary diagram is found to be an effective graphical presentation tool that can be used for the quality evaluation of mortar using blended fine aggregate.