• Title/Summary/Keyword: Recycle Plastic

Search Result 68, Processing Time 0.03 seconds

A Study on Material Separation of Heavy Group Plastics by Triboelectrostatic Separation (마찰하전형(摩擦荷電型) 정전선별(靜電選別)에 의한 고비중(高比重) 플라스틱 혼합물(混合物)의 재질분리(材質分離)에 관한 연구(硏究))

  • Jeon, Ho-Seok;Baek, Sang-Ho;Park, Chul-Hyun;Kim, Byoung-Gon
    • Resources Recycling
    • /
    • v.16 no.2 s.76
    • /
    • pp.56-62
    • /
    • 2007
  • In this study, we carried out the research on triboelectrostatic separation for heavy group plastics (PET, PVC) recovered from wet gravity separation. From the research on charging characteristic for the choice of charging materials, it was found that PP was optimum charging material to make high charging amount with opposite polarity for PET and PVC of heavy group. Therefore, we manufactured a charger of cyclone type using PP material for separation of PET and PVC. At optimum test conditions that used PP cyclone charger developed in this study, we developed a triboelectrostatic separation technique that can separate PET plastic up to grade of 98.5% and recovery of 86.2%. We established new separation technology that could recycle the PET and PVC heavy group plastics recovered from wet gravity separation.

Recovery of Polyethylene Telephthalate Monomer over Cu or Mn/γ-Al2O3 Catalysts (Cu, Mn/γ-Al2O3 촉매상에서 polyethylene telephthalate 단량체의 회수 연구)

  • Sim, Jae-Wook;Kim, Seung-Soo
    • Applied Chemistry for Engineering
    • /
    • v.28 no.4
    • /
    • pp.485-489
    • /
    • 2017
  • Polyethylene terephthalate (PET) has been widely applied in polymers and packaging industries to produce synthetic fibers, films, drink bottles or food containers. Therefore, it has become one of the major plastic wastes. In this article, glycolysis known as one of the main methods in PET chemical recycling was investigated using a glycol to break down the polymer into a monomer. Glycolysis of PET and ethylene glycol was performed in a micro-tubing reactor under various conditions. The effect of glycolysis conditions on the product distribution was investigated at experimental conditions of the EG/PET ratio of 1~4, the reaction time of 15~90 min and the reaction temperature of $250{\sim}325^{\circ}C$ with Mn and Cu catalysts. The highest yield of bis (2-hydroxyethyl) terephthalate monomer (BHET) was obtained as 89.46 wt% under the condition of the reaction temperature of $300^{\circ}C$ and the time of 30 min using 10 wt% $Cu/{\gamma}-Al_2O_3$ catalyst, with the PET and ethylene glycol ratio of 1 : 2.

Recycle of the Glass fiber Obtained from the Roving Cloth of FRP II: Study for the Physical Properties of fiber-reinforced Concrete (폐 FRP 선박의 로빙층에서 분리한 유리섬유의 재활용 II: 섬유강화 콘크리트의 물성에 관한 연구)

  • Kim, Yong-Seop;Lee, Seung-Hee;Yoon, Koo-Young
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.11 no.1
    • /
    • pp.46-49
    • /
    • 2008
  • Recycling glass fiber, 'F-fiber,' was obtained by the separation of the roving layer from waste FRP and the concrete products or structures were considered for its application. Experiment was carried out for the bending strength of aggregate (2.45 of cement) by weight and F-fiber (density of 1.45, volume ratio to all of the aggregate and the cement). Whereas the specimen containing 1% F-fiber showed the bending strength 23% higher than that without F-fiber after curing far 28 days, the one with 0.5% F-fiber did not give any change. It could be found, therefore, that the minimum mixing amount should be larger than 0.5% fur the strength reinforcement. One of the reinforcing concrete product, bench flume, containing 1% F-fiber showed 21% increment of bending strength In contrast to that without F-fiber.

  • PDF

Development of the biodegradable octopus pot and its catch ability comparison with a Polyethylene (PE) pot (생분해문어단지의 제작과 Polyethylene (PE) 문어단지와의 어획 비교)

  • Cha, Bong-Jin;Lee, Gun-Ho;Park, Sung-Uk;Cho, Sam-Kwang;Lim, Ji-Hyun
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.47 no.1
    • /
    • pp.10-17
    • /
    • 2011
  • Biodegradable octopus pot was developed to reduce plastic pollution problem in the sea and fishing trouble between fishermen. It can be expect to recycle other wasted biodegrade fishing gear. Experimental fishing was carried out to understand the difference in fishing efficiency between Polyethylene (PE) octopus pots and biodegradable (Polybutylene Succinate and Polybutylene adipate-co-terephthalate) octopus pots which was tried to make in this study in the sea. There were caught by 237 numbers of fishing during the experimental period. Among the 237 numbers of fishing, 160 or 67.5% were PE pots which were more than the biodegradable pots. A comparison of the monthly catches between the PE pots and biodegradable pots shows that the catches were overall higher in the PE pots than in the other pots. The result is very similar with the comparison of total catches by each type of the pots. In terms of bycatch, the number of species, amount of catches and the number of fishing with bycatch were more significant in the biodegradable pots than in the PE pots.

A Study for Improving the Vehicle Dismantling and Recycling System of Korea (한국의 자동차 해체·재활용 제도 개선 연구)

  • Lyou, Byung-Woon
    • Journal of Auto-vehicle Safety Association
    • /
    • v.8 no.4
    • /
    • pp.24-30
    • /
    • 2016
  • In Korea, the Vehicle Dismantler and Recycler industry is supervised by the Ministry of Land, Infrastructure and Transport under the Automobile Management Act. Also, Korean Automotive recycling businesses are supervised by the Minister of Environment under the Resource Recirculation Act. The main concern of the Minister of Environment is how the wastes from Dismantled vehicles will be environmentally removed, stored, treated, recycled or disposed. In 2000, the European Union (EU) adopted the End-of-Life Vehicles Directive (2000/53/EC) which required Members to ensure the collection, treatment and recovery of end-of-life vehicles (ELVs). The Directive, the most tightly regulated and precautionary legal systems, required that the last owner of a vehicle could drop off the ELV at an authorized treatment facility and that the producers of the ELV should pay the cost of the program. The adoption of the ELVs directive has led the development of Automotive Dismantler and Recycler networks to reuse, refurbish, remanufacture, recycle and recover parts and materials embedded in ELVs. Also, the ELVs directive which has had an insignificant impact on Korean manufacturers has strong presence in the European market and has been successfully externalized on them. The Korean manufacturers not only achieve the 85% recycling target set by the ELVs directive but also meet the Extended Producer Responsibility (EPR) which requires manufacturers to contribute dismantling process. In order to improve the Korean vehicle dismantling and recycling system, the Automobile Management Act and the Resource Recirculation Act should be harmonized. Particularly the roles of the Ministry of Land, Infrastructure and Transport and the Minister of Environment should be sharply divided. Like Japan, the ELV management needs to be highly centralized, regulated, and controlled by the ministry specialized in Vehicle, namely the Ministry of Land, Infrastructure and Transport and the sub organizations. Like EU Members, recovery, reuse, and recycling must be distinguished. Recovery is defined as the final productive use of the parts and materials embedded in ELVs, which includes reuse and remanufacture of parts and recycling of the other materials. Dismantling process and reuse and remanufacture of parts must be governed by the Ministry of Land, Infrastructure and Transport. For environmental recycling or disposal of waste materials, such as CFCs, glass and plastic material, and toxic substances, governmental financial support system should be in place.

A study on press plasticity of A3003-O aluminum material (A3003-O 알루미늄 소재의 프레스 성형성에 대한 연구)

  • Kim, Hyeok-Jin;Han, Seong-Ryeol;Kim, Kyung-A
    • Design & Manufacturing
    • /
    • v.13 no.4
    • /
    • pp.23-27
    • /
    • 2019
  • People's interest in the environmental problems of the Earth is growing as they come to the modern world, and research is being actively conducted on how to protect the environment. As a result, the automobile industry, one of the causes of environmental pollution, is also affected. Therefore, research is being conducted to improve the fuel economy and light weight of cars, development of pollution-free cars such as electric cars, and aluminium materials that are lighter than ordinary steel sheets and easier to recycle are gaining attention. In this experiment, the material was formed to form a form of aluminium and the material reduction rate of the side wall of the foam was tested according to the amount of side wall. The material used in the experiment was A3003-O, which is less plastic than normal steel plates, but has excellent corrosion resistance, plasticity and weldability compared to aluminium materials, but has poor tensile strength. For tensile testing, a certain array of Forming Shapes was molded and the height of the Forming was set to 5mm, and the height of the Forming was 4.7mm, indicating that the difference between the first 5mm Forming and the height was not large. In addition, the material reduction rate was tested by giving 15, 0, and -0.15 teas, respectively, and was found to be valuable as a product only for -0.15.

Microplastic Management for Preventing Risk of Persistent/Bioaccumulative Substance (잔류성.생물축적성 물질 피해저감을 위한 미세플라스틱(Microplastic) 관리방안)

  • Park, Jeong-Gue;Gan, Sun-Yeong
    • Journal of Environmental Policy
    • /
    • v.13 no.2
    • /
    • pp.65-98
    • /
    • 2014
  • Plastics of the marine environment are broken gradually down into smaller particles by chemical weathering, called "microplastic". Microplastics absorb organic pollutants that are persistent bioaccumulative substances. If marine animals ingested microplastic added to contaminant, it will lead to a bioaccumation through the food web. It eventually destroy health of marine environment and is harmful to marine top predators including humans. Also, Microplastics can impact marine animals by leaching the endocrine disruptor in microplastic itself as well as playing an adsorbent role of organic pollutants. Persistent and bioaccumulative substances in Korea have been regulated in terms of chemical risk but existing regulations largely have been limited in land-based source management of microplastic. Thus, the harmful impact will be increased whether the microplastics absorbed contaminants. To prevent risk of persistent bioaccumulative substances, this study suggests the following: (1) the strict management of microplastic by designating the hazardous substances, (2) expand the use of biodegradable plastic, (3) the effort for reuse and recycle, (4) the expand of microplastic clean-up programs.

  • PDF

A Study on the Base Material Specific and Processing Methods of Recycled New Materials in Space (실내공간에 사용되는 재활용 신재료의 소재 및 가공방법 연구)

  • Seo, Ji-Eun;Jeong, Hee-Jeong
    • Korean Institute of Interior Design Journal
    • /
    • v.21 no.3
    • /
    • pp.22-30
    • /
    • 2012
  • Nowadays the issue of environmental pollution and ecological destruction is not a simple issue but an important issue to be continuously considered. It is deemed that a study for recycled new materials is immediately required and this study is to analyze features and processing methods of new materials which can be used to interior space. We found the recycled new materials used for space through researching various web sits. And then we analyzed what the base materials are and classified that base materials are whether natural or artificial of the recycled materials. We classified processing methods of the recycled new materials after researching general processing methods. The result of this study would be an important material to the research and development of new finishing materials with consideration of environment and to the research for a guideline of applicable new materials. The results of this study are as follows : First, we could classify widely 2 categories into natural material and artificial material and then 10 subcategories into metal, glass, wood, rubber, stone, plastic, leather or fabric, ceramic, concrete and so on, and analyzed that which material is mostly used and whether it is single material or multiple material. In order to analyze the feature of processing method. Second, we could classify into 4 categories such as junction, surface process, molding, and insert, and found out which processing method is applied based on objects of research. Third, as an analysis result of the recycled new material feature, in order to develop various new materials, it is required to study on combination and application of 2 materials or more rather than single material. Four, as a analysis result of the processing method feature, I would like to suggest that development and application of various processing methods are required. Especially, it is necessary to grope for a way to develop new functional materials for interior space through a systemic research and analysis of processing method of other fields. Furthermore, a way to reuse recycled new materials should be considered in a stage of selection and application of processing method.

  • PDF

Melting of PCB scrap for the Extraction of Metallic Components (PCB스크랩으로부터 유가금속성분 회수를 위한 용융처리)

  • Kwon Eui-Hyuk;Jang Sung-Hwan;Han Jeong-Whan;Kim Byung-Su;Jeong Jin-Ki;Lee Jae-Chun
    • Korean Journal of Materials Research
    • /
    • v.15 no.1
    • /
    • pp.31-36
    • /
    • 2005
  • It is well known that PCB (Printed Circuit Board) is a complex mixture of various metals mixed with various types of plastics and ceramics. In this study, high temperature pyre-metallurgical process was investigated to extract valuable metallic components from the PCB scrap. For this purpose, PCB scrap was shredded and oxidized to remove plastic materials, and then, quantitative analyses were made. After the oxidation of the PCB scrap, $30.6wt\%SiO_2,\;19.3wt\%Al_2O_3\;and\;14wt{\%}CaO$ were analyzed as major oxides, and thereafter, a typical composition of $32wt\%SiO_2-20wt\%Al_2O_3-38wt{\%}CaO-10wt\%MgO$ was chosen as a basic slag system for the separation of metallic components. Moreover a size effect of crushed PCB scrap was also investigated. During experiments a high frequency induction furnace was used to melt and separate metallic components. As a result, it was found that the size of oxidized PCB scrap was needed to be less 0.9 m to make a homogeneous liquid slag and to recycle metallic components over $95\%$.

Optimization of Color Sorting Process of Shredded ELV Bumper using Reaction Surface Method (반응표면법을 이용한 폐자동차 범퍼 파쇄물의 색채선별공정 최적화 연구)

  • Lee, Hoon
    • Resources Recycling
    • /
    • v.28 no.2
    • /
    • pp.23-30
    • /
    • 2019
  • An color sorting technique was introduced to recycle End-of-life automobile shredded bumpers. The color sorting is a innovate method of separating the differences in the color of materials which are difficult to separate in gravity and size classification by using a camera and an image process technique. Experiments were planned and optimal conditions were derived by applying BBD (Box-Behnken Design) in the reaction surface method. The effects of color sensitivity, feed rate and sample size were analyzed, and a second-order reaction model was obtained based on the analysis of regression and statistical methods and $R^2$ and p-value were 99.56% and < 0.001. Optimum recovery was 94.1% under the conditions of color sensitivity, feed rate and particle size of 32%, 200 kg/h, and 33 mm respectively. The recovery of actual experiment was 93.8%. The experimental data agreed well with the predicted value and confirmed that the model was appropriate.