• Title/Summary/Keyword: Recursive Method

Search Result 743, Processing Time 0.027 seconds

Input-Output Feedback Linearization of Sensorless IM Drives with Stator and Rotor Resistances Estimation

  • Hajian, Masood;Soltani, Jafar;Markadeh, Gholamreza Arab;Hosseinnia, Saeed
    • Journal of Power Electronics
    • /
    • v.9 no.4
    • /
    • pp.654-666
    • /
    • 2009
  • Direct torque control (DTC) of induction machines (IM) is a well-known strategy of these drives control which has a fast dynamic and a good tracking response. In this paper a nonlinear DTC of speed sensorless IM drives is presented which is based on input-output feedback linearization control theory. The IM model includes iron losses using a speed dependent shunt resistance which is determined through some effective experiments. A stator flux vector is estimated through a simple integrator based on stator voltage equations in the stationary frame. A novel method is introduced for DC offset compensation which is a major problem of AC machines, especially at low speeds. Rotor speed is also determined using a rotor flux sliding-mode (SM) observer which is capable of rotor flux space vector and rotor speed simultaneous estimation. In addition, stator and rotor resistances are estimated using a simple but effective recursive least squares (RLS) method combined with the so-called SM observer. The proposed control idea is experimentally implemented in real time using a FPGA board synchronized with a personal computer (PC). Simulation and experimental results are presented to show the capability and validity of the proposed control method.

Classification method for failure modes of RC columns based on key characteristic parameters

  • Yu, Bo;Yu, Zecheng;Li, Qiming;Li, Bing
    • Structural Engineering and Mechanics
    • /
    • v.84 no.1
    • /
    • pp.1-16
    • /
    • 2022
  • An efficient and accurate classification method for failure modes of reinforced concrete (RC) columns was proposed based on key characteristic parameters. The weight coefficients of seven characteristic parameters for failure modes of RC columns were determined first based on the support vector machine-recursive feature elimination. Then key characteristic parameters for classifying flexure, flexure-shear and shear failure modes of RC columns were selected respectively. Subsequently, a support vector machine with key characteristic parameters (SVM-K) was proposed to classify three types of failure modes of RC columns. The optimal parameters of SVM-K were determined by using the ten-fold cross-validation and the grid-search algorithm based on 270 sets of available experimental data. Results indicate that the proposed SVM-K has high overall accuracy, recall and precision (e.g., accuracy>95%, recall>90%, precision>90%), which means that the proposed SVM-K has superior performance for classification of failure modes of RC columns. Based on the selected key characteristic parameters for different types of failure modes of RC columns, the accuracy of SVM-K is improved and the decision function of SVM-K is simplified by reducing the dimensions and number of support vectors.

Extraction Scheme of Function Information in Stripped Binaries using LSTM (스트립된 바이너리에서 LSTM을 이용한 함수정보 추출 기법)

  • Chang, Duhyeuk;Kim, Seon-Min;Heo, Junyoung
    • Journal of Software Assessment and Valuation
    • /
    • v.17 no.2
    • /
    • pp.39-46
    • /
    • 2021
  • To analyze and defend malware codes, reverse engineering is used as identify function location information. However, the stripped binary is not easy to find information such as function location because function symbol information is removed. To solve this problem, there are various binary analysis tools such as BAP and BitBlaze IDA Pro, but they are based on heuristics method, so they do not perform well in general. In this paper, we propose a technique to extract function information using LSTM-based models by applying algorithms of N-byte method that is extracted binaries corresponding to reverse assembling instruments in a recursive descent method. Through experiments, the proposed techniques were superior to the existing techniques in terms of time and accuracy.

A novel method for solving structural problems: Elastoplastic analysis of a pressurized thick heterogeneous sphere

  • Abbas Heydari
    • Advances in Computational Design
    • /
    • v.9 no.1
    • /
    • pp.39-52
    • /
    • 2024
  • If the governing differential equation arising from engineering problems is treated as an analytic, continuous and derivable function, it can be expanded by one point as a series of finite numbers. For the function to be zero for each value of its domain, the coefficients of each term of the same power must be zero. This results in a recursive relationship which, after applying the natural conditions or the boundary conditions, makes it possible to obtain the values of the derivatives of the function with acceptable accuracy. The elastoplastic analysis of an inhomogeneous thick sphere of metallic materials with linear variation of the modulus of elasticity, yield stress and Poisson's ratio as a function of radius subjected to internal pressure is presented. The Beltrami-Michell equation is established by combining equilibrium, compatibility and constitutive equations. Assuming axisymmetric conditions, the spherical coordinate parameters can be used as principal stress axes. Since there is no analytical solution, the natural boundary conditions are applied and the governing equations are solved using a proposed new method. The maximum effective stress of the von Mises yield criterion occurs at the inner surface; therefore, the negative sign of the linear yield stress gradation parameter should be considered to calculate the optimal yield pressure. The numerical examples are performed and the plots of the numerical results are presented. The validation of the numerical results is observed by modeling the elastoplastic heterogeneous thick sphere as a pressurized multilayer composite reservoir in Abaqus software. The subroutine USDFLD was additionally written to model the continuous gradation of the material.

Implementation of Capacitive Passive Telemetry RF Sensor System Using RLS Estimation Algorithm (RLS 추정 알고리즘을 이용한 정전용량형 원격 RF 센서 시스템 구현)

  • Kim, Gyeong-Yeop;Yu, Dong-Guk;Lee, Jun-Tak
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.11a
    • /
    • pp.131-137
    • /
    • 2007
  • 본 연구에서는 RLS(Rescursive Least Square) 추정 알고리즘을 이용하여 정전용량형 센서를 사용한 원격 RF 센서 시스템을 구현하고자 한다. IC 칩 형태의 원격 RF 센서 시스템이 가지는 구성의 복잡성 그리고 전력소모 문제를 해결하기 위해 보다 간단한 유도결합모델이 제안된다. 원격 RF 시스템은 페이저법을 이용하여 수학적으로 모델링되며, 모델기반의 RLS 알고리즘을 적용하기위해 시스템의 파라메타를 재배열한다. 오차 제곱합의 수렴특성을 가진 RLS 알고리즘을 이용하여 정전용량 파라메타를 추정한다. 실제 위상차를 측정하기 위해 Exclusive OR를 이용한 위상차 감지 장치를 제안한다. 센서로는 각종 환경 측정-습도, 압력 등-에 실제 활용되고 있는 정전용량형 센서를 채택한다. 잡음을 내포한 측정 데이터에 대한 추정 성능을 확인함으로써 그 유효성을 검증하고자 한다.

  • PDF

Variable Selection in Clustering by Recursive Fit of Normal Distribution-based Salient Mixture Model (정규분포기반 두각 혼합모형의 순환적 적합을 이용한 군집분석에서의 변수선택)

  • Kim, Seung-Gu
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.5
    • /
    • pp.821-834
    • /
    • 2013
  • Law et al. (2004) proposed a normal distribution based salient mixture model for variable selection in clustering. However, this model has substantial problems such as the unidentifiability of components an the inaccurate selection of informative variables in the case of a small cluster size. We propose an alternative method to overcome problems and demonstrate a good performance through experiments on simulated data and real data.

Linear Robust Target Tracking Filter Using the Range Differences Measured By Formation Flying Multiple UAVs (다중 UAV에서 측정된 거리차 정보를 이용한 선형 강인 표적추적 필터 설계)

  • Lee, Hye-Kyung;Han, Seul-Ki;Ra, Won-Sang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.2
    • /
    • pp.284-290
    • /
    • 2012
  • This paper addresses a new passive target tracking problem using the range differences measured by cooperative UAVs. In order to solve the range difference based passive target tracking problem within the framework of linear robust state estimation, the uncertain linear measurement model which contains the stochastic parameter uncertainty is derived by using the noisy range difference measurements. To cope with the performance degradation due to the stochastic parameter uncertainty, the recently developed non-conservative robust Kalman filtering technique [1] is applied. For the cruciform formation flying UAVs, the relationship between the target tracking performance and the measurement errors is quantitatively analyzed. The proposed filter has practical advantages over the classical nonlinear filters because, for its recursive linear structure, it can provide satisfactory convergence properties and is suitable for real-time multiple UAVs applications. Through the simulations, the usefulness of the proposed method is demonstrated.

Efficient Implementation of a Pseudorandom Sequence Generator for High-Speed Data Communications

  • Hwang, Soo-Yun;Park, Gi-Yoon;Kim, Dae-Ho;Jhang, Kyoung-Son
    • ETRI Journal
    • /
    • v.32 no.2
    • /
    • pp.222-229
    • /
    • 2010
  • A conventional pseudorandom sequence generator creates only 1 bit of data per clock cycle. Therefore, it may cause a delay in data communications. In this paper, we propose an efficient implementation method for a pseudorandom sequence generator with parallel outputs. By virtue of the simple matrix multiplications, we derive a well-organized recursive formula and realize a pseudorandom sequence generator with multiple outputs. Experimental results show that, although the total area of the proposed scheme is 3% to 13% larger than that of the existing scheme, our parallel architecture improves the throughput by 2, 4, and 6 times compared with the existing scheme based on a single output. In addition, we apply our approach to a $2{\times}2$ multiple input/multiple output (MIMO) detector targeting the 3rd Generation Partnership Project Long Term Evolution (3GPP LTE) system. Therefore, the throughput of the MIMO detector is significantly enhanced by parallel processing of data communications.

The identification of continuous-time systems within a closed-loop

  • Bae, Chul-Min;Wada, Kiyoshi;Imai, Jun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.157-160
    • /
    • 1996
  • Physical systems axe generally continuous-time in nature. However as the data measured from these systems is generally in the form of discrete samples, and most modern signal processing is performed in the discrete-time domain, discrete-time models are employed. This paper describes methods for estimating the coefficients of continuous-time system within a closed loop control system. The method employs a recursive estimation algorithm to identify the coefficients of a discrete-time bilinear-operator model. The coefficients of the discrete-time bilinear-operator model closely approximate those of the corresponding continuous-time Laplace transform transfer function.

  • PDF

Design and Analysis of a Robust State Estimator Combining Perturbation Observer (섭동관측기를 연합한 강인 상태추정기 설계 및 해석)

  • Kwon SangJoo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.6
    • /
    • pp.477-483
    • /
    • 2005
  • This article describes a robust state estimation method which enables to produce reliable estimates in spite of heavy perturbation including plant uncertainty and external disturbances. The main idea is to combine the standard state estimator with the perturbation observer in the estimator frame. The perturbation observer reflects equivalent quantity of plant uncertainty and external disturbances during the estimation process so that the state estimator dynamics gets as close as possible to the real plant dynamics. The robust state estimator proposed in this paper is given in a recursive discrete-time form which is very useful fur implementation purpose. In terms of the error dynamics derived for the robust state estimator, we discuss the stability issue and noise sensitivity. The effectiveness and practicality of the robust state estimator are verified through numerical examples and experimental results.