• Title/Summary/Keyword: Recursive Learning

Search Result 112, Processing Time 0.032 seconds

Self-Organizing Fuzzy Modeling Based on Hyperplane-Shaped Clusters (다차원 평면 클러스터를 이용한 자기 구성 퍼지 모델링)

  • Koh, Taek-Beom
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.12
    • /
    • pp.985-992
    • /
    • 2001
  • This paper proposes a self-organizing fuzzy modeling(SOFUM)which an create a new hyperplane shaped cluster and adjust parameters of the fuzzy model in repetition. The suggested algorithm SOFUM is composed of four steps: coarse tuning. fine tuning cluster creation and optimization of learning rates. In the coarse tuning fuzzy C-regression model(FCRM) clustering and weighted recursive least squared (WRLS) algorithm are used and in the fine tuning gradient descent algorithm is used to adjust parameters of the fuzzy model precisely. In the cluster creation, a new hyperplane shaped cluster is created by applying multiple regression to input/output data with relatively large fuzzy entropy based on parameter tunings of fuzzy model. And learning rates are optimized by utilizing meiosis-genetic algorithm in the optimization of learning rates To check the effectiveness of the suggested algorithm two examples are examined and the performance of the identified fuzzy model is demonstrated via computer simulation.

  • PDF

On Neural Fuzzy Systems

  • Su, Shun-Feng;Yeh, Jen-Wei
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.14 no.4
    • /
    • pp.276-287
    • /
    • 2014
  • Neural fuzzy system (NFS) is basically a fuzzy system that has been equipped with learning capability adapted from the learning idea used in neural networks. Due to their outstanding system modeling capability, NFS have been widely employed in various applications. In this article, we intend to discuss several ideas regarding the learning of NFS for modeling systems. The first issue discussed here is about structure learning techniques. Various ideas used in the literature are introduced and discussed. The second issue is about the use of recurrent networks in NFS to model dynamic systems. The discussion about the performance of such systems will be given. It can be found that such a delay feedback can only bring one order to the system not all possible order as claimed in the literature. Finally, the mechanisms and relative learning performance of with the use of the recursive least squares (RLS) algorithm are reported and discussed. The analyses will be on the effects of interactions among rules. Two kinds of systems are considered. They are the strict rules and generalized rules and have difference variances for membership functions. With those observations in our study, several suggestions regarding the use of the RLS algorithm in NFS are presented.

Utilizing Minimal Label Data for Tomato Leaf Disease Classification: An Approach through Recursive Learning Based on YOLOv8 (토마토 잎 병해 분류를 위한 최소 라벨 데이터 활용: YOLOv8 기반 재귀적 학습 방식을 통한 접근)

  • Junhyuk Lee;Namhyoung Kim
    • The Journal of Bigdata
    • /
    • v.9 no.1
    • /
    • pp.61-73
    • /
    • 2024
  • Class imbalance is one of the significant challenges in deep learning tasks, particularly pronounced in areas with limited data. This study proposes a new approach that utilizes minimal labeled data for effectively classifying tomato leaf diseases. We introduced a recursive learning method using the YOLOv8 model. By utilizing the detection predictions of images on the training data as additional training data, the number of labeled data is progressively increased. Unlike conventional data augmentation and up-down sampling techniques, this method seeks to fundamentally solve the class imbalance problem by maximizing the utility of actual data. Based on the secured labeled data, tomato leaves were extracted, and diseases were classified using the EfficientNet model. This process achieved a high accuracy of 98.92%. Notably, a 12.9% improvement compared to the baseline was observed in the detection of Late blight diseases, which has the least amount of data. This research presents a methodology that addresses data imbalance issues while offering high-precision disease classification, with the expectation of application to other crops.

Estimation of Electrical Loads Patterns by Usage in the Urban Railway Station by RNN (RNN을 활용한 도시철도 역사 부하 패턴 추정)

  • Park, Jong-young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.11
    • /
    • pp.1536-1541
    • /
    • 2018
  • For effective electricity consumption in urban railway station such as peak load shaving, it is important to know each electrical load pattern by various usage. The total electricity consumption in the urban railway substation is already measured in Korea, but the electricity consumption for each usage is not measured. The author proposed the deep learning method to estimate the electrical load pattern for each usage in the urban railway substation with public data such as weather data. GRU (gated recurrent unit), a variation on the LSTM (long short-term memory), was used, which aims to solve the vanishing gradient problem of standard a RNN (recursive neural networks). The optimal model was found and the estimation results with that were assessed.

Decision Feedback Algorithms using Recursive Estimation of Error Distribution Distance (오차분포거리의 반복적 계산에 의한 결정궤환 알고리듬)

  • Kim, Namyong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.5
    • /
    • pp.3434-3439
    • /
    • 2015
  • As a criterion of information theoretic learning, the Euclidean distance (ED) of two error probability distribution functions (minimum ED of error, MEDE) has been adopted in nonlinear (decision feedback, DF) supervised equalizer algorithms and has shown significantly improved performance in severe channel distortion and impulsive noise environments. However, the MEDE-DF algorithm has the problem of heavy computational complexity. In this paper, the recursive ED for MEDE-DF algorithm is derived first, and then the feed-forward and feedback section gradients for weight update are estimated recursively. To prove the effectiveness of the recursive gradient estimation for the MEDE-DF algorithm, the number of multiplications are compared and MSE performance in impulsive noise and underwater communication environments is compared through computer simulation. The ratio of the number of multiplications between the proposed DF and the conventional MEDE-DF algorithm is revealed to be $2(9N+4):2(3N^2+3N)$ for the sample size N with the same MSE learning performance in the impulsive noise and underwater channel environment.

Reconstruction of High-Resolution Facial Image Based on A Recursive Error Back-Projection

  • Park, Joeng-Seon;Lee, Seong-Whan
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04b
    • /
    • pp.715-717
    • /
    • 2004
  • This paper proposes a new reconstruction method of high-resolution facial image from a low-resolution facial image based on a recursive error back-projection of top-down machine learning. A face is represented by a linear combination of prototypes of shape and texture. With the shape and texture information about the pixels in a given low-resolution facial image, we can estimate optimal coefficients for a linear combination of prototypes of shape and those of texture by solving least square minimization. Then high-resolution facial image can be obtained by using the optimal coefficients for linear combination of the high-resolution prototypes, In addition to, a recursive error back-projection is applied to improve the accuracy of synthesized high-resolution facial image. The encouraging results of the proposed method show that our method can be used to improve the performance of the face recognition by applying our method to reconstruct high-resolution facial images from low-resolution one captured at a distance.

  • PDF

Control of Chaos Dynamics in Jordan Recurrent Neural Networks

  • Jin, Sang-Ho;Kenichi, Abe
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.43.1-43
    • /
    • 2001
  • We propose two control methods of the Lyapunov exponents for Jordan-type recurrent neural networks. Both the two methods are formulated by a gradient-based learning method. The first method is derived strictly from the definition of the Lyapunov exponents that are represented by the state transition of the recurrent networks. The first method can control the complete set of the exponents, called the Lyapunov spectrum, however, it is computationally expensive because of its inherent recursive way to calculate the changes of the network parameters. Also this recursive calculation causes an unstable control when, at least, one of the exponents is positive, such as the largest Lyapunov exponent in the recurrent networks with chaotic dynamics. To improve stability in the chaotic situation, we propose a non recursive formulation by approximating ...

  • PDF

Reconstruction of High-Resolution Facial Image Based on Recursive Error Back-Projection of Top-Down Machine Learning (하향식 기계학습의 반복적 오차 역투영에 기반한 고해상도 얼굴 영상의 복원)

  • Park, Jeong-Seon;Lee, Seong-Whan
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.3
    • /
    • pp.266-274
    • /
    • 2007
  • This paper proposes a new reconstruction method of high-resolution facial image from a low-resolution facial image based on top-down machine learning and recursive error back-projection. A face is represented by a linear combination of prototypes of shape and that of texture. With the shape and texture information of each pixel in a given low-resolution facial image, we can estimate optimal coefficients for a linear combination of prototypes of shape and those that of texture by solving least square minimizations. Then high-resolution facial image can be obtained by using the optimal coefficients for linear combination of the high-resolution prototypes. In addition, a recursive error back-projection procedure is applied to improve the reconstruction accuracy of high-resolution facial image. The encouraging results of the proposed method show that our method can be used to improve the performance of the face recognition by applying our method to reconstruct high-resolution facial images from low-resolution images captured at a distance.

Design of Incremental FCM-based Recursive RBF Neural Networks Pattern Classifier for Big Data Processing (빅 데이터 처리를 위한 증분형 FCM 기반 순환 RBF Neural Networks 패턴 분류기 설계)

  • Lee, Seung-Cheol;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.6
    • /
    • pp.1070-1079
    • /
    • 2016
  • In this paper, the design of recursive radial basis function neural networks based on incremental fuzzy c-means is introduced for processing the big data. Radial basis function neural networks consist of condition, conclusion and inference phase. Gaussian function is generally used as the activation function of the condition phase, but in this study, incremental fuzzy clustering is considered for the activation function of radial basis function neural networks, which could effectively do big data processing. In the conclusion phase, the connection weights of networks are given as the linear function. And then the connection weights are calculated by recursive least square estimation. In the inference phase, a final output is obtained by fuzzy inference method. Machine Learning datasets are employed to demonstrate the superiority of the proposed classifier, and their results are described from the viewpoint of the algorithm complexity and performance index.

Robot Control via RPO-based Reinforcement Learning Algorithm (RPO 기반 강화학습 알고리즘을 이용한 로봇제어)

  • Kim, Jong-Ho;Kang, Dae-Sung;Park, Joo-Young
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.4
    • /
    • pp.505-510
    • /
    • 2005
  • The RPO(randomized policy optimizer) algorithm, which utilizes probabilistic policy for the action selection, is a recently developed tool in the area of reinforcement learning, and has been shown to be very successful in several application problems. In this paper, we propose a modified RPO algorithm, whose critic network is adapted via RLS(Recursive Least Square) algorithm. In order to illustrate the applicability of the modified RPO method, we applied the modified algorithm to Kimura's robot and observed very good performance. We also developed a MATLAB-based animation program, by which the effectiveness of the training algorithms on the acceleration or the robot movement were observed.