• Title/Summary/Keyword: Recovery of metal

Search Result 546, Processing Time 0.032 seconds

A Study on the Bioleaching of Cobalt and Copper from Cobalt Concentrate by Aspergillus niger strains (Aspergillus niger 균주를 이용(利用)한 코발트 정광(精鑛)으로부터 코발트 및 구리의 미생물(微生物) 침출(浸出) 연구(硏究))

  • Ahn, Hyo-Jin;Ahn, Jae-Woo;Bang, Duk-Ki;Kim, Meong-Woon
    • Resources Recycling
    • /
    • v.22 no.2
    • /
    • pp.44-52
    • /
    • 2013
  • Bioleaching behavior of metal ions for recovery of cobalt and copper from cobalt concentrate was investigated by employing three Aspergillus niger strains. Various factors, such as organic acid generation with fungi type, pH of the culture and pulp density were studied. The results showed that the best fungi for organic acid(citric acid and oxalic acid) generation was A. niger KCTC 6144 using Malt Extract Broth culture at initial pH 3.5. But A. niger KCTC 6985 was more effective for the leaching of cobalt and copper from cobalt concentrate. Our results showed that 82% cobalt and 98% copper was dissolved by A. niger KCTC 6985 at 10g/L pulp density, at pH 3.5 and $24^{\circ}C$ after 15 days incubation.

Production of Fine Cobalt Metal Powders from Superalloy Scrap(1) (Treating Superalloy Scrap with Zinc) (Superalloy 스크랩으로부터 Co 미분말의 제조(1) (Superalloy 스크랩의 아연처리))

  • 박문경;이영근
    • Resources Recycling
    • /
    • v.4 no.1
    • /
    • pp.52-59
    • /
    • 1995
  • Treating bulk superalloy scrap with molten zinc has been studled to facililate recycling and recovery- of cobalt.Superalloys investigated were the cobalt-base Mar-M-509 and X45 and the nickel-base Rene 80. Charges withZnlscrap ratlos of 1.5-6.5 were heated to 750-9002 far 1-7.5 hours in a nitrogen atmosphere. The moltenzinc dissolved superalloy scrap and zinc was removed by vacuum distillation at 850-Wk for 4-6 hours. Ithas been concluded that the optimum conditions of decomposition for Mar-M-509 and Rene 80 \"ere dissolutiontemperature of about 850k, Znlscrap ratlo of about 5, and dissalution time of about 5.5 hours. The zinc-treatedsuperalloy prouducts were friable and reacted rapidly with acid solutions. Leaching 9mm pieces of unalloyedMar-M-509 or Rene 80 with 5 times the stolchlometric amount oi 6N HCI at 90t ior 3 hours dissolved about1.5-7.270, while leachmg of the minus 20-mesh products dissolved about 89.0-93.0%.ved about 89.0-93.0%.

  • PDF

Manufacture Technology of Monoammonium phosphate from LCD Waste Acid (LCD 제조공정의 혼합폐산으로부터 일인산암모늄 제조 기술)

  • Lee, Ha-Young;Lee, Sang-Gil;Park, Sung-Kook;Kim, Ju-Han;Kim, Ju-Yup;Kim, Jun-Young
    • Clean Technology
    • /
    • v.15 no.4
    • /
    • pp.253-257
    • /
    • 2009
  • The waste solution discharged form the LCD(Liquid Crystal Display) manufacturing process contains phosphoric acid, nitric acid, acetic acid and metal ions such Al and other impurities. In this study, vacuum evaporation and diffusion dialysis was developed to commercialize an efficient system for recovering the high-purity phosphoric acid and manufacturing monoammonium phosphate. By vacuum evaporation, almost 99% of nitric and acetic acid was removed. Also, by diffusion dialysis, about 97.5% of Al was removed. Monoammonium phosphate was manufactured from purified phosphoric acid and ammonium hydroxide. In order to get the optimum manufacturing condition, the molar ratio of ammonium hydroxide and phosphoric acid, pH and temperature was controlled. Using this optimum condition, we obtained the recovery rate of monoammonium phosphate of about 90%.

Studies on the Production of Gluconic Acid by Resting Cell System of Aspergillus niger (Aspergillus niger의 휴지균체에 의한 Gluconic Acid생성에 관한 연구)

  • 정지관;양호석;신규철;양한철
    • Microbiology and Biotechnology Letters
    • /
    • v.9 no.1
    • /
    • pp.7-19
    • /
    • 1981
  • The production of gluconic acid from glucose by the resting cell system of Aspergillus niger was studied. It was found that the conversion products from glucose by the resting cell system were markedly influenced by the pH, temperature, substrate concentration, aeration, metal ions, cultivation time and storage conditions of the resting cells. Conversion products were identified as gluconic acid by the thin layer chromatography and infrared spectrophotometry. These conversions were greatly stimulated by addition of $Mg^{++}$, and S $n^{++}$, but showed inhibitory effects by C $u^{++}$, H $g^{++}$, C $d^{++}$, A $g^{+}$ and cyanide. For the optimum cell storage, it was effective to be kept at -$25^{\circ}C$ in 0.05M phosphate buffer solution of pH 7.0. The gluconic acid production by the resting cell system was more effective than those of the fermentation with respect to cultivation time, yield, recovery and re-use of the cell.l.l.l.l.l.l.

  • PDF

A Study on the Alkaline Protease Produced from Bacillus subtilis (Bacillus subtilis가 생산하는 Alkaline Protease에 관한 연구)

  • Chang, Shin-Jae;Kim, Yoon-Sook;Sung, Ha-Chin;Choi, Yong-Jin;Yang, Han-Chul
    • Applied Biological Chemistry
    • /
    • v.31 no.4
    • /
    • pp.356-360
    • /
    • 1988
  • The alkaline protease producing bacteria isolated from soil and identified as Bacillus subtilis. The optimum medium for alkaline protease production from the microorganism was as follows; soluble starch, 1.5% ; proteose peptone, 0.5% ; $K_2HPO_4$, 0.1% ; $MgSO_4{\cdot}7H_2O$, 0.02% and sodium carbonate, 1.0%. The optimum temperature for alkaline protease production was $35^{\circ}C$, and the initial pH of medium was pH 10.5. The alkaline protease activity was about 2,300 U per ml of culture broth by Casein-Folin Method. A 9.2 fold purification of alkaline protease was obtained from culture broth. The recovery was 14% and purified enzyme was identified as single band, and its molecular weight was about 19,000. The optimum temperature for enzyme reaction was $70^{\circ}C$, and optimum pH was 12. The activity of purified enzyme was inhibited by metal ion ($Fe^{++}$), and Phenylmethylsulfonyl Fluoride, a serine protease inhibitor.

  • PDF

Recycling of Copper & Nickel in ASR to satisfy the EU ELV Directive (유럽연합 환경기준 충족을 위한 자동차폐기물 내의 구리와 니켈 재활용에 대한 연구)

  • Lee, Hyun-Chang;Park, Woo-Cheul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.7
    • /
    • pp.1729-1734
    • /
    • 2009
  • About 40 million automotive vehicles all over the world and 0.55 million in Korea were retired from use annually. Every nation is desperate to decrease environmental pollution by ELVs(End of Life Vehicles) and try to tighten the regulations. Europe passed laws requiring OEMs to increase vehicles' recovery and reuse rate to 95% by 2015 from current 84%. The ferrous parts, 75% of total automobile weight, are almost recycled whereas the remaining 25% of the non-metal -predominantly plastics as well as form, glass and rubber- and the non-ferrous materials -copper, nickel and aluminium- end up in landfills. The recycling status of non-ferrous materials represented by copper and nickel is reviewed and how much the recycling rate will be improved is calculated.

A Study on the Separation of Cerium from Rare Earth Precipitates Recovered from Waste NiMH Battery (폐니켈수소전지에서 회수된 희토류복합 침전분말로부터 세륨 회수에 대한 연구)

  • Kim, Boram;Ahn, Nak-Kyoon;Lee, Sang-Woo;Kim, Dae-Weon
    • Resources Recycling
    • /
    • v.28 no.6
    • /
    • pp.18-25
    • /
    • 2019
  • In order to recover the cerium contained in the spent nickel metal hydride batteries (NiMH battery), the recovered rare earth complex precipitates from NIMH were converted into rare earth hydroxides through ion exchange reaction to react with NaOH aqueous solution at a reaction temperature of 70 ℃, for 4 hours. Rare earth hydroxides were oxidized by injecting air at 80 ℃ for 4 hours to oxidize Ce3+ to Ce4+. The oxidation rate of cerium was confirmed to be about 25 % through XPS, and the oxidized powder was separated from the rest of the rare earth using the difference in solubility in dilute sulfuric acid. The finally recovered powder has a crystal phase of cerium hydroxide (Ce(OH)4). The cerium purity of the final product was about 94.6 %, and the recovery rate was 97.3 %.

A Study on the Recycling of Molten Ladle Slag Residue into LF Process (Ladle내 잔류(殘留) 용융(熔融)슬래그의 LF 공정(工程)으로 재활용(再活用)에 관한 연구(硏究))

  • Kim, Young-Hwan;Yoo, Jung-Min;Kim, Dong-Sik;Lim, Jong-Hoon;Yang, Sung-Ho
    • Resources Recycling
    • /
    • v.22 no.1
    • /
    • pp.36-41
    • /
    • 2013
  • LF slag is formed by EAF carryover slag and slag former(such as lime, dolomite) put into the ladle during the tapping molten metal. After LF process, continuous casting is started when molten steel is sent from ladle to tundish through bottom nozzle of ladle. Conventionally, remained molten slag and steel in ladle are poured into a slag port and they are transferred to a slag yard and then recycled. In this study, we investigated about recycling of molten LF slag residue(including Fe residue to reuse) which is made in steelmaking process. As a result, lime usage was decreased about 2.2~3.2 kg/steel-ton and also molten steel yield rate was increased about 0.3 ~ 0.5 percent point.

Fabrication of $SnO_2$ Gas Sensor added by Metal Oxide for DMMP (DMMP 검출용 금속산화물을 첨가한 $SnO_2$ 가스센서 제조)

  • 최낙진;반태현;곽준혁;백원우;김재창;허증수;이덕동
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.54-61
    • /
    • 2003
  • $SnO_2$ gas sensor for the detection DMMP, simulant of nerve gas was fabricated and its characteristics were examined. Sensing materials were $SnO_2$ added by TEX>$\alpha$-$Al_{2}O_{3}$ with 0∼20wt.% and $In_{2}O_{3}$ with 0∼3wt.% and were physically mixed each material. They were deposited by screen printing method on alumina substrate. The sensor was consisted of sensing electrode with interdigit(IDT) type in front and a heater in back side. Its dimension was 7$\times$10$\times$0.6$\textrm{mm}^2$. Crystallite size 8t phase identification, specific surface area and morphology of fabricated $SnO_2$ powders were analyzed by X-ray diffraction(XRD), surface area analyzer(BET) and by a scanning electron microscope(SEM), respectively. Sensor was measured as flow type and sensor resistance change was monitored as real time using LabVIEW program. The best sensitivities were 75% at adding 4wt.% TEX>$\alpha$-$Al_{2}O_{3}$, operating temperature $300^{\circ}C$ and 87% at adding 2wt.% $In_{2}O_{3}$, operating temperature $350^{\circ}C$ to DMMP 0.5ppm. Response and recovery times were about 1 and 3 min., respectively. Repetition measurement was very good with $\pm$3% in full scale. As a result, operating temperature was lower TEX>$\alpha$-$Al_{2}O_{3}$ than $In_{2}O_{3}$, but sensitivity was higher $In_{2}O_{3}$ than $\alpha$-$Al_{2}O_{3}$.

Purification and Properties of Alkaline Pretense from Xanthomonas sp. YL-37 (Xanthomonas sp. YL-37 균주가 생산하는 Alkali성 단백질분해효소의 정제 및 성질)

  • 장형수;권태종
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.5
    • /
    • pp.427-434
    • /
    • 1998
  • An alkaline protease was 4-fold purified, yielding 2.3% of recovery by ammonium sulfate precipitation, CM-cellulose column chromatography and Sephadex G-100 column chromatography. The purified enzyme was estimated to be monomeric with molecular weight of about 62,000 from polyacrylamide gel eletrophoresis (PAGE) and sodiumdodecylsulfate polyacrylamide gel electrophoresis (SDS-FAGE). The optimal pH and temperature of the alkaline pretense activity were 11.0 and 50$^{\circ}C$, respectively, exhibiting high stability at pH value from 6.0 to 11.0 at 50$^{\circ}C$ for 30 minute. The alkaline pretense was activated by MnSO$_4$, CaCl$_2$, and was inhibited by CuSO$_4$, ZnSO$_4$, HgCl$_2$, EDTA and EGTA. Also, the enzyme was found to be a metaloenzyme requiring Mn$\^$2+/ as cofactor. The NH$_2$-terminal amino acid of alkaline protease was alanine. The Km and Vmax values of this enzyme for casein was 4.0 mg/$m\ell$ and 5,500 unit/$m\ell$, respectively.

  • PDF