• Title/Summary/Keyword: Reconstruction error

Search Result 431, Processing Time 0.03 seconds

Design of Image Transmission System over the Wireless Communication (무선 통신하에서 강인한 영상전송시스템 설계)

  • Jang, Hong-Sung;Kong, Hyung-Yun;Choi, Won-Ho
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2000.10b
    • /
    • pp.1263-1266
    • /
    • 2000
  • In this paper, we propose a reliable Image transmission system with Decision Feedback Equalization (DFE), and use diversity combining techniques over multipath fading channels. It is shown that the proposed system has the features of simplicity in implementation with DFE and diversity combining techniques without modifying DFE. This study includes error concealment techniques for reconstruction of missing blocks in JPEG. To verify and compare the performance of our proposed system, the computer simulations have been performed in three diversity combining cases.

  • PDF

Improved Georeferencing of a Wearable Indoor Mapping System Using NDT and Sensor Integration

  • Do, Linh Giang;Kim, Changjae;Kim, Han Sae
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.5
    • /
    • pp.425-433
    • /
    • 2020
  • Three-dimensional data has been used for different applications such as robotics, building reconstruction, and so on. 3D data can be generated from an optical camera or a laser scanner. Especially, a wearable multi-sensor system including the above-mentioned sensors is an optimized structure that can overcome the drawbacks of each sensor. After finding the geometric relationships between sensors, georeferencing of the datasets acquired from the moving system, should be carried out. Especially, in an indoor environment, error propagation always causes problem in the georeferencing process. To improve the accuracy of this process, other sources of data were used to combine with LiDAR (Light Detection and Ranging) data, and various registration methods were also tested to find the most suitable way. More specifically, this paper proposed a new process of NDT (Normal Distribution Transform) to register the LiDAR point cloud, with additional information from other sensors. For real experiment, a wearable mapping system was used to acquire datasets in an indoor environment. The results showed that applying the new process of NDT and combining LiDAR data with IMU (Inertial Measurement Unit) information achieved the best result with the RMSE 0.063 m.

A Study on the Holter Data Compression Algorithm -Using Piecewise Self-Affine Fractal Model- (Holter Data 압축 알고리즘에 관한 연구 -Piecewise Self-Affine Fractal Model을 이용한-)

  • 전영일;정형만
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.1
    • /
    • pp.17-24
    • /
    • 1995
  • This paper presents a new compression method (or ECG data using iterated contractive transformations. The method represents any range of ECG signal by piecewise self-afrine fractal Interpolation (PSAFI). The piecewise self-afrine rractal model is used where a discrete data set is viewed as being composed of contractive arfine transformation of pieces of itself. This algorithm was evaluated using MIT/BIH arrhythmia database. PSAFI is found to yield a relatively low reconstruction error for a given compression ratio than conventional direct compression methods. The compression ratio achieved was 883.9 bits per second (bps) - an average percent rms difference (AFRD) of 5.39 percent -with the original 12b ECG samples digitized at 400 Hz.

  • PDF

A Band Partitioning Algorithm for Contour Triangulation (등치선 삼각분할을 위한 띠 분할 알고리즘)

  • Choe, Yeong-Gyu;Jo, Tae-Hun
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.3
    • /
    • pp.943-952
    • /
    • 2000
  • The surface reconstruction problem from a set of wire-frame contours is very important in diverse fields such as medical imaging or computer animation. In this paper, surface triangulation method is proposed for solving the problem. Generally, many optimal triangulation techniques suffer from the large computation time but heuristic approaches may produce very unnatural surface when contours are widely different in shape. To compensate the disadvantages of these approaches, we propose a new heuristic triangulation method which iteratively decomposes the surface generation problem from a band (a pair of vertices chain) into tow subproblems from two sub-bands. Generally, conventional greedy heuristic contour triangulation algorithm, suffer from the drastic error propagation during surface modeling when the adjacent contours are different in shape. Our divide-and-conquer algorithm, called band partitioning algorithm, processes eccentric parts of the contours first with more global information. Consequently, the resulting facet model becomes more stable and natural even though the shapes are widely different. An interesting property of our method is hat it supports multi-resolution capability in surface modeling time. According to experiments, it is proved to be very robust and efficient in many applications.

  • PDF

Numerical Simulation of Shock Wave Reflecting Patterns for Different Flow Conditions

  • Choi, Sung-Yoon;Oh, Se-Jong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.3 no.1
    • /
    • pp.74-85
    • /
    • 2002
  • The numerical experiment has been conducted to investigate the unsteady shock wave reflecting phenomena. The cell-vertex finite-volume, Roe's upwind flux difference splitting method with unstructured grid is implemented to solve unsteady Euler equations. The $4^{th}$-order Runge-Kutta method is applied for time integration. A linear reconstruction of the flux vector using the least-square method is applied to obtain the $2^{nd}$-order accuracy for the spatial derivatives. For a better resolution of the shock wave and slipline, the dynamic grid adaptation technique is adopted. The new concept of grid adaptation technique, which is much simpler than that of conventional techniques, is introduced for the current study. Three error indicators (divergence and curl of velocity, and gradient of density) are used for the grid adaptation procedure. Considering the quality of the solution and the numerical efficiency, the grid adaptation procedure was updated up to $2^{nd}$ level at every 20 time steps. For the convenience of comparison with other experimental and analytical results, the case of interaction between the straight incoming shock wave and a sharp wedge is simulated for various flow conditions. The numerical results show good agreement with other experimental and analytical results, in the shock wave reflecting structure, slipline, and the trajectory of the triple points. Some critical cases show disagreement with the analytical results, but these cases also have been proven to show hysteresis phenomena.

PROBLEMS IN INVERSE SCATTERING-ILLPOSEDNESS, RESOLUTION, LOCAL MINIMA, AND UNIQUENESSE

  • Ra, Jung-Woong
    • Communications of the Korean Mathematical Society
    • /
    • v.16 no.3
    • /
    • pp.445-458
    • /
    • 2001
  • The shape and the distribution of material construction of the scatterer may be obtained from its scattered fields by the iterative inversion in the spectral domain. The illposedness, the resolution, and the uniqueness of the inversion are the key problems in the inversion and inter-related. The illposedness is shown to be caused by the evanescent modes which carries and amplifies exponentially the measurement errors in the back-propagation of the measured scattered fields. By filtering out all the evanescent modes in the cost functional defined as the squared difference between the measured and the calculated spatial spectrum of the scattered fields from the iteratively chosen medium parameters of the scatterer, one may regularize the illposedness of the inversion in the expense of the resolution. There exist many local minima of the cost functional for the inversion of the large and the high-contrast scatterer and the hybrid algorithm combining the genetic algorithm and the Levenberg-Marquardt algorithm is shown to find efficiently its global minimum. The resolution of reconstruction obtained by keeping all the propating modes and filtering out the evanescent modes for the regularization becomes 0.5 wavelength. The super resolution may be obtained by keeping the evanescent modes when the measurement error and instance, respectively, are small and near.

  • PDF

An Enhanced Wavelet Packet Image Coder Using Coefficients Partitioning (계수분할을 이용한 개선된 워이블릿 패킷 영상 부호화 알고리듬)

  • 한수영;김홍렬;이기희
    • Journal of the Korea Society of Computer and Information
    • /
    • v.7 no.1
    • /
    • pp.112-119
    • /
    • 2002
  • We propose an enhanced wavelet packet image coder algorithm which is based on the coefficients partition. The proposed wavelet packet image coder uses the first-order entropy to reduce the total compression time, and achieves low bit rates and rate-distortion performance by the zero-tree based coding using correlations between coefficients partition. This new algorithm represents new parent-children relationships for reducing image reconstruction error using the correlations between each frequency subbands and then the wavelet packet coefficients are Partitioned by a new order. The computer simulations demonstrate higher PSNR under the same bit rate and improved image compression time and enhanced rate control compare with conventional algorithms. From the simulation results, it is shown that the encoding and decoding process of proposed coder are much simple and accurate than present method against texture images , which include many mid-frequency elements.

  • PDF

Triangulation of Voronoi Faces of Sphere Voronoi Diagram using Delaunay Refinement Algorithm (딜러니 개선 알고리듬을 이용한 삼차원 구의 보로노이 곡면 삼각화)

  • Kim, Donguk
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.4
    • /
    • pp.123-130
    • /
    • 2018
  • Triangulation is one of the fundamental problems in computational geometry and computer graphics community, and it has huge application areas such as 3D printing, computer-aided engineering, surface reconstruction, surface visualization, and so on. The Delaunay refinement algorithm is a well-known method to generate quality triangular meshes when point cloud and/or constrained edges are given in two- or three-dimensional space. In this paper, we propose a simple but efficient algorithm to triangulate Voronoi surfaces of Voronoi diagram of spheres in 3-dimensional Euclidean space. The proposed algorithm is based on the Ruppert's Delaunay refinement algorithm, and we modified the algorithm to be applied to the triangulation of Voronoi surfaces in two ways. First, a new method to deciding the location of a newly added vertex on the surface in 3-dimensional space is proposed. Second, a new efficient but effective way of estimating approximation error between Voronoi surface and triangulation. Because the proposed algorithm generates a triangular mesh for Voronoi surfaces with guaranteed quality, users can control the level of quality of the resulting triangulation that their application problems require. We have implemented and tested the proposed algorithm for random non-intersecting spheres, and the experimental result shows the proposed algorithm produces quality triangulations on Voronoi surfaces satisfying the quality criterion.

An Improved Fast Camera Calibration Method for Mobile Terminals

  • Guan, Fang-li;Xu, Ai-jun;Jiang, Guang-yu
    • Journal of Information Processing Systems
    • /
    • v.15 no.5
    • /
    • pp.1082-1095
    • /
    • 2019
  • Camera calibration is an important part of machine vision and close-range photogrammetry. Since current calibration methods fail to obtain ideal internal and external camera parameters with limited computing resources on mobile terminals efficiently, this paper proposes an improved fast camera calibration method for mobile terminals. Based on traditional camera calibration method, the new method introduces two-order radial distortion and tangential distortion models to establish the camera model with nonlinear distortion items. Meanwhile, the nonlinear least square L-M algorithm is used to optimize parameters iteration, the new method can quickly obtain high-precise internal and external camera parameters. The experimental results show that the new method improves the efficiency and precision of camera calibration. Terminals simulation experiment on PC indicates that the time consuming of parameter iteration reduced from 0.220 seconds to 0.063 seconds (0.234 seconds on mobile terminals) and the average reprojection error reduced from 0.25 pixel to 0.15 pixel. Therefore, the new method is an ideal mobile terminals camera calibration method which can expand the application range of 3D reconstruction and close-range photogrammetry technology on mobile terminals.

Accurate Wind Speed Prediction Using Effective Markov Transition Matrix and Comparison with Other MCP Models (Effective markov transition matrix를 이용한 풍속예측 및 MCP 모델과 비교)

  • Kang, Minsang;Son, Eunkuk;Lee, Jinjae;Kang, Seungjin
    • New & Renewable Energy
    • /
    • v.18 no.1
    • /
    • pp.17-28
    • /
    • 2022
  • This paper presents an effective Markov transition matrix (EMTM), which will be used to calculate the wind speed at the target site in a wind farm to accurately predict wind energy production. The existing MTS prediction method using a Markov transition matrix (MTM) exhibits a limitation where significant prediction variations are observed owing to random selection errors and its bin width. The proposed method selects the effective states of the MTM and refines its bin width to reduce the error of random selection during a gap filling procedure in MTS. The EMTM reduces the level of variation in the repeated prediction of wind speed by using the coefficient of variations and range of variations. In a case study, MTS exhibited better performance than other MCP models when EMTM was applied to estimate a one-day wind speed, by using mean relative and root mean square errors.