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PROBLEMS IN INVERSE SCATTERING-
ILLPOSEDNESS, RESOLUTION, LOCAL MINIMA,
AND UNIQUENESSE

JUNG-WOONG RA

ABSTRACT. The shape and the distribution of material construc-
tion of the scatterer may be obtained from its scattered fields by
the iterative inversion in the spectral domain. The illposedness, the
resolution, and the uniqueness of the inversion are the key prob-
lems in the inversion and inter-related. The illposedness is shown
to be caused by the evanescent modes which carries and ampli-
fies exponentially the measurement errors in the back-propagation
of the measured scattered fields. By filtering out all the evanesce
nt modes in the cost functional defined as the squared differrence
between the mesured and the calculated spatial spectrum of the
scattered flelds from the iteratively chosen medium parameters of
the scatterer, one may regularize the illposedness of the inversion in
the expense of the resolution. There exist many local minima of the
cost functional for the inversion of the large and the high-contrast
scatterer and the hybrid algorithm combining the genetic algorithm
and the Levenberg-Marquardt algorithm is shown to find efficiently
its global minimum. The resclution of reconstruction obtained by
keeping all the propating modes and filtering out the evanescent
modes for the regularization becomes 0.5 wavelength. The super
resolution may be obtained by keeping the evanescent modes wnen
the measurement error and distance, tespectively, are small and
near.

1. Introduction

The shape and material parameters such as the complex permittivi-
ties and permeabilities of an object may be reconstructed from the fields
scattered by the object. For a small and low contrasted object, the Born
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approximation [1] linearizes the relation between the permittivity dis-
tribution and the scattered field by approximating the total field inside
the penetrable scattering object by its incident field.

For high contrasted object where permitivities of the object are much
different from the host medium, the moment method inversion [2] may be
used to discretize the object into small cells much smaller than the wave-
length, such that the fields in each cell may be assumed constant, and
then to obtain the polarization current in each cell from the scattered
fields. The total field inside the object is obtained from the polarization
currents, and the distribution of the permittivity is then obtained by
taking the ratio of the polarization current and the total field in each
cell. This moment method inversion, however, is shown to suffer from
che “illposedness”{3] in a sense that a small error in the scattered fields
causes a large error in the polarization currents. The cause of this ill-
posedness may be identified as the exponentially decaying behavior of
the evanescent modes, which makes the small error in the evanescent
modes of the scattered fields grow exponentially in the back propagat-
ing process of the inversion [4].

By selecting only the propagating modes excluding the evanescent
modes in the spectrum of the measured scattered fields, the illposedness
is regularized without the extra regularization terms of Tikhonov [3] nor
the use of the pseudo-inversion, which needs much more measured data
points than needed [5]. For a large scatterer producing fewer propa-
gating modes P than the number of unknowns N, the total number of
cells discretizing the object, the moment method inversion does not give
the right reconstruction of the object even with many multiple incident
waves, since the polarization currents in each cell vary with different
incident waves. Iterative inversion is more effective for this type of re-
construction. One may define a cost functional as the summation of
the squared magnitude of the difference between the measured and the
calculated scattered fields from the iteratively chosen dielectric profiles.
One then minimizes this cost functionals by utilizing the optimizing algo-
rithms such as Levenberg-Marquardt algorithm [6], simulated annealing
algorithm [7], and genetic algorithm [8].

The Levenberg-Marquardt (LM) algorithm alone is good enough to
reconstruct the low contrasted and small object satisfying the criterion
of Born approximation. One needs the stochastic algorithms such as the
simulated annealing (SA) algorithm or the genetic (GE) algorithm to
find the global minimum in reconstructing a large and high contrasted
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object, since there exists many local minima in its cost functional [9].
A hybrid algorithm combining LM and SA [9] or GE [10] is effective
in finding the global minimum of the cost functional. Regularization is
needed for the iterative inversion and the spectral domain filtering of
evanescent modes is effective as in the moment method inversion [9, 10].

Super resolution seems to be obtainable in the reconstruction of the
object since the discretization of the object seems to be arbitrary. How-
ever, the super resolution requires proper measurement of the scattered
fields including evanescent fields which may cause the illposedness in
the process of inversion. The scattered fields may be represented as
a superposition of plane waves, i.e. the Fourier transformation of the
field, say in y-direction, and transformed back, say in z-direction, to the
plane of object. The resolution of the reconstruction of the object in the
y-direction, say Ay, may then be obtained from the sampling theorem,
Ay Ak = 2n, where Ak is the bandwidth of the spatial frequency of the
fields in the object plane in the y-direction, which is the same with that
of the measured scattered fields. Measurement of all the propagating
modes gives Ak < 2k, where kg is the wave number of the background
medium, and the maximum resolution becomes Ay > 1/2\, where X is
the wavelength. For the super resolution such as Ay ~ 0.1x, Ak >> kg
is needed and it means the measurement of the evanescent mode fields
in addition to the propagating modes.

Non-uniqueness of the inverse solution is often mentioned, by argu-
ing the existence of non-radiating sources. In addition, the existence of
the inverse solution is questionable due to the illposedness of the inverse
problems. One may filter out the contribution of evanescent modes in
the scattered fields at the expense of the resolution of the reconstruction,
which regularizes inversion process. One may show that the unique re-
construction of the profile parameters of the penetrable object up to that
resolution from the scattered field is possible by the iterative inversion.

2. Illposedness of inversion

When a time harmonic plane wave having a z-polarized electric field
is incident upon a two-dimensional dielectric cylinder of arbitrary cross
section along the z axis, the total field satisfies the inhomogeneous
Helmbholtz equation with the source term producing the incident plane
wave, If the cross section of the object is given by its distribution of
relative permittivities e(p), where p is the two-dimensional cylindrical
coordinate vectors, the total fields polarized in the » direction may be
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represented by the sum of the incident wave and the scattered wave, u*
[11],

M) wio) =1 [ ]S dde) — u(p)Clp.p),

where kg is the wave number in the background medium, v is the total
field inside the dielectric cylinder Sp, p and g are the cylindrical or
rectangular coordinate vectors and G is the two-dimensional Green's
function. The radiation condition for »° is satisfied by G(p,p'), and G
may be represented either in the configuration or the spectral domain
as

(2a)  Glp,p) = —(G/HHP (kolp— ),

o
(2b) = (/0 Y. JmlkopVHD (kop)e™ =), p> 0,
e—j\/kg—ﬁ2|z—a:'|
25VEE - B

where J,, and H,S%’ are the mth order Bessel function and Ha,nk_el func-
tion of the second kind, respectively, for the time dependence e/“*.

— —3B(y—y
(2¢) o /_oo dfe

One may calculate the scattered fields numerically by using the mo-
ment method [12] by dividing the cross section Sy into small cells smaller
than 0.2)\/\/¢, where A is the free space wavelength. The size of the cell
is small enough that the polarization current inside each cell is taken as
a constant. Substituting (2) into (1), one obtains the integral in (1) for
the scattered field by the summation over the total number of cells N,
as

N
(3) uS(p) = lenlpn) — Nun(pn)In(p, pn),

n=1

where €, and u, are the relative permittivity and the total field at p = pg,
respectively,

I.(p,p,) = — (§m/2)koaJ1(koa)

> ™ HE (kop) Jm(kopn)e ™, p > pf

m=-0Q

(4)
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and
o) =5 [ 438y YT
alfh P 9 oo 2‘? \/W
% (2kod) sin Bd sin(y/k3 — 52d)
Vbd R
from the spectral domain Green'’s function in {2b) and (2c¢), respectively,
where Graf’s integral theorem [13] of Bessel functions is used in the pro-
cess of the integral evaluation of (1) and (2b). [14]

To find ¢(p) from the integral in (1) is a nonlinear problem. This inver-
sion problem is shifted into finding the polarization current, (e, —1)u,, in
(3) from the measured scattered field u®(p) for the same number of mea-
surement points with the total number of cells, p=p;, { = 1,2,--- | N.
This problem becomes linear and its solution is unique if I, is well
defined, where I,, depends upon the geometrical configuration of the
discretized cells and measurement points, |p; — pn| = p1n. Since the cells
are discretized much smaller than the wavelength, p;,, does not change
much for the neighboring (n + 1)th cell, and the values of the neighbor-
ing column of the matrix I,(p;,) are not much different from I, {pp,41)-
This makes the inversion of the matrix I,, from (3) in the configuration
domain unstable. If there exists a very small error in the measurement
of the scattered field u¥, it causes uncontrollable error in the calculation
of (€, — 1)u,. This is generally known as the illposedness of Hadamard,
and the quadratic constraint [L5] in the sense of Tikhonov has been used
to regularize the illposedness. Thus, the configuration domain inversion
of the polarization current needs an additional regularization term [16]
in the inversion of the matrix I,, to compromise the errors in the resul-
tant polarization currents and the stabilization of the inversion process.

(5)

3. lterative inversion in the spectral domain

One may utilize the additional data points generated by using mul-
tiple incidences and frequencies of the source via the iterative inversion.
The cost functional may be defined as the summation of the squared
magnitude of the difference fields between the measured fields and the
fields calculated from the assumed set of dielectric profiles for the iter-
ations. One then minimizes this cost functional iteratively by updating
the distribution of the complex permittivity profile until the original
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distribution of the complex permittivity is found.

1 cell
Square distectri I”‘
cylinger { $ b

Scattered tield point {p.¢)
Original object ( 5.} P

Uy

FiGURE 1. Plane wave incidence on an arbitrary object
which is estimated by the square dielectric cylinder in the
inversion.

The cost functional f may be defined as

1 I J 2w 2
6) f= 3 ZZ/O de |uiy(p, s wi, ) — ug(p, ¢y wi, bis n)|
=1 j=1

where u3, and u’, are, respectively, the measured and the calculated
M C

scattered fields from the distribution e,, I and J are the total number
of angular frequencies(w;), and their incident angles(¢;), respectively,
and the squared difference fields are integrated over angular angle ¢ in
the measurement cylindrical surface of p = constant as shown in Figure
1. The measurement error and noise may be included in uf,r One
may convert this functional in the configuration domain into that in
the spectral domain by using the Green’s function given in (2b) for the
cylindrical measurement.

Substituting (3} and (4) into (6), the integration over ¢ makes the
double summation over m in {4) into the single summation which may
be taken outside of the squared magnitude of F;,;; as

> i i | Fonis

T
i=1 j=1 m=-0o¢

(7) =

[ R
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where
ml hqb) jﬂ'kﬁa
Frni; = HP (kop) am(piwi; &5) _ J1(koa)
(8) C N
> (en — D wii ) I kopn)e ™ },
n=1

the second term in (8) is obtained from (3) and (4) and

i 2T

(9) am(fiwindi) = oo | dguis(p, diwi, 6;)e™.

The cause of the illposedness may be explained from the behavior of

the product Hg)(kgp)Jm(kgpn) in (4) and (7). When a white Gauss-
ian noise distribution is assumed in the scattered field, the noise power
distributed over the modes is uniform. The modal amplitudes of the
noiseless scattered field decrease fast for higher modes of |m| > M. For
the inversion, these scattered fields with noise are transformed into the
scattered fields inside the scatterer in which the back propagation via
the Hg)(kop) is needed, where Hf(f)(kg p) diverges fast in the near field
range, kgp << m, m > 0, as

1 ekopn \™
1 F((Z) ~ O n ‘

This diverging process amplifies the noise existing in the scattered
field in the process of back propagation of the scattered field. This is the
same back propagation effect for the plane wave spectrum representation
of the Green’s function in (6), which amplifies exponentially the noise
carried by the evanescent modes of the scattered fields [17, 18]. It is
almost impossible to obtain the original permittivity distribution, since
the small numerical errors existing in this moment method inversion are
amplified exponentially in the back propagation process if all the modes
of the scattered field are included in the inversion. By filtering out all
these higher-order modes and keeping only the lower-order modes of
|m| < M, where are M is the smallest integer making the argument in
(10) about one as

(11) M > ekgpy /4.

For the maximum radius of the scatterer p = D/2, the inversion is
stabilized in the presence of noise and errors in the scattered field and
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any other additional regularization processes are not needed.

In order to see the various limitations of the iterative inversion meth-
ods, the cost functionals defined in (7) and (8) are calculated as a func-
tion of the relative permittivities of the cells €, and the object size D.
The cost functionals for the fields scattered by a homogeneous circular
cylinder of relative permittivity ¢ = 2 may be calculated as a function
of the relative permittivity distribution ¢,, as shown in Figure 2, by as-
suming that the measured fields are equal to the exact analytic solution
for a plane wave incidence. Three cost functionals in Figure 2 are for
three different sizes of the object diameter D equal to 1A, 2X, and 42X,
where A is the free space wavelength of the source. It shows that only
one global minimum occurs at ¢, = 2 and many local minima for other
values of €, depending on D). When the initial values of all ¢, are set
to 1, the global minimum may be found at ¢ = 2 from Figure 2 by the
LM algorithm for the diameter of the dielectric cylinder D = 1A. For
the other diameters larger than 1A the LM algorithm finds the values of
the nearest minimum from ¢, = 1, that is, ¢, ~ 0.7 for 2X and 1.3 for 4.

In order to find the profile distribution of the given object scatterer,
one needs the algorithm to find the global minimum of the cost func-
tional. LM algorithm, however, may be terminated in one of the local
minima since it depends upon the initial profiled distribution. The sim-
ulated annealing (SA) algorithm (7, 9] and the genetic algorithm (GA)
[8, 10] are used to find the global minimum successfully. A hybrid algo-
rithm combining either SA or GA with LM algorithm is used to find
the global minimum of the cost functional more effectively for the recon-
struction of the large and high-contrast penetrable object such as the
scattering object of 3A by 3\ having relative dielectric constant ¢, = 4.0
when 10% Gaussian noise is assumed in the measured scattered fields [9,
10}. If the LM algorithm traps in one of the local minima, this hybrid
algorithm switches LM to either SA or GA to find another permittivity
distribution corresponding to the lower cost functional and switches to
LM again to minimize the functional to reach the deeper minimum and
repeats the process until the giobal minimum is found.

Figure 3 shows how the cost functional changes with the number of
angular spectral modes. The cost functional is calculated for a circular
dielectric cylinder of diameter 2A and a relative permittivity of 9. The
cost functional with 17 modes, which is the total number of effective
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FiGUuRE 2. Cost functional for a circular dielectric cylin-
der of (a) € = 2 and its diameter D as parameter.

modes, shows the distinctive global minimum at ¢ = 9 and overlaps
with that of 31 modes, even in the presence of 5% Gaussian noise in
the scattered fields. Very deep local minima indistinguishable from the
global minimum exist with a 1 mode cost functional. In the presence
of noise, the local minima of the cost functional are deepened, and the
global minimum is shallowed and shifted to the slightly different values
of relative permittivity. One tay speculate that more data points larger
than the effective modes do not improve the reconstruction by the iter-
ative minimization even in the presence of ncise in the scattered fields.
In the presence of noise it is easier to trap in the local minimum, and the
reconstructed distribution of permittivities may be deviated slightly.

From the cost functional obtained by an arbitrary dielectric cylinder
it is shown that a single global minimum of the cost functional occurs
when the total number of the cells of the scatterer N is smaller than
K P, where K is the number of multiple views of different frequencies,
K =T+ J, and P is the total numver of modes used, P = 2M + 1. It
is shown numerically that multiple global minima occur in its cost func-
tional if N > K P, which prohibits the convergence of the reconstruction
to the original profile.
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FIGURE 3. Cost functional versus relative permittivity
as a function of the number of angular spectral modes
for a circular dielectric cylinder of ¢ = 9 and D = 2\
(a) Without noise and (b) with 5% Gaussian noise in the
scattered fields.

4. Sampling theorem, super resolution, and uniqueness

Iterative inversion of the two-dimensional thin dielectric object dis-
tributed along the y-axis excited by a line source, as shown in Figure
4, may be used to show the relationship between the resolution of the
reconstruction and the sampling of the measured data. The scattered
fields in the plane of z = d in Figure 4 are numerically calculated by
the method of moments and used for the measured scattered fields for
the iterative inversion. By taking the Fourier transform of the measured
scattered fields uSM(d, y) in y, one obtains its spatial frequency spectrum

uyy(d, B) as

(12) Sy (d,B) = / " dye It (d,y),

—00
where § is the spatial frequency in y-direction. The measured spatial
spectrum Usy(d, B) in the plane of z = d may be transformed into that
in the plane of x = 0, where the scatteing object is located, via equation
in (5) as

(13) Usi (0, 8) = Uii(d, B)e?VFe—F4 I\ [kZ — g2 <0,

where I,,, stands for the imaginary part of.
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The scattered fields may be measured at equally-spaced points in y
by the interval of Ay such that

(14) N(Ay) =L,

where N and L are the total number and the total length of the mea-
surements in y in the plane of z = d. The Fourier transform of the
N equally-spaced data of the scattered fields is periodic with period 27
and may be sampled by the same N equally-spaced spatial frequencies
for one period by the interval of AS = 2%' such that its discrete Fourier
series reproduces the original discretized scattered fields repeatedly by

the period of L. Then one obtains

L L 2 2
(15) (Ay)=*ﬁ=m=§ﬂ, Aﬁ=%,
AB

where B is the total bandwidth of the spatial frequencies.

Filtering the evanescent modes of the measured scattered fields out
and keeping its propagating modes gives —kyp < 3 < kp and B = 2kg.
The relationship in (13) between the measured spectrum in the plane
of z = d and back propagated spectrum in the object plane of x = 0 is
essentially the same with different phase term from that of x=d which
gives the resolution(Ay) in the object plane from (15) as

(16) (A =22 =28 =2

B %k 2
where A is the wavelength in free space.

For the super resolution such as Ay ~ 0.1A, the required bandwidth
in (19) becomes B = 2n/0.1A = 10ky which requires the measurements
of the evanescent modes in addition to all the propagating modes since
B > kg. Numerical examples of 24 cell reconstruction shown in Figure
5a shows that the error of reconstruction increases as the distance of the
measurement plane(d) increases since its bandwidth B = 5kg includes
the evanescent modes, where its resolution (Ay) = 0.2X is used for the
reconstruction. Figure 5b shows that the root mean square error of
the reconstruction increases as the resolution of reconstruction increases
when the measurement plane is 2\ apart. This shows clearly that the
large error occurs for the resolution of reconstruction smaller than 0.5A
which needs the measurement of evanescent modes.

The cost functionals for the fields scattered by a homogeneous circular
cylinder shown in Figure 3 shows that one global minimum exists if
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FIGURE 4. Iterative inversion from the planar measure-
ment of the scattered fields.

the number of modes of the measured scattered field exceeds the total
number of unknowns. 5% Gaussian noise added to the scattered fields
does not change the location of the global minimum of the cost functional
much if the higher order modes are filtered out. This implies that the
cost functional at the global minimum is bounded if the sufficient number
of propagating modes are used as

T M
(17) ZZ 3 |Fml? <,

i=1 j=1m=-M

where § is a constant by the measurement error. Keeping all the propa-
gating modes means the finite resolution of 0.5 and the distribution of
permittivities of the scattering object discretized by the cells of resolu-
tion 0.5A may be obtained by making Fi,;; = 0 in (7) and (8) as

am{piwi, ;) _ Jrhkoa
HE (kop) 2

Jl (kga)
(18) N
E Dup Wz:¢3) m(kopn)e” Jm¢n

n=1
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where the total number of equations in (18) becomes 2M + 1+ I + J,
since 2M -1, [, and J are the total number of m, 7, and 7, respectively.
This gives a unique reconstruction of N unknowns for (e, — 1)uy,, if the
total number of equations, 2M + 1+ T+ J = N, since we have N linear
independent algebraic equations for N unknowns.

Roconstruction results with 1% Gausslan random noise

2« B

relative dielectric constant
8 - & =

-

LA
L2
[ A1)

a2

0.8

RMS amor

o

bod

g
LI .
[ ° » ¥ g 8
s ) ; = 5, : ]
o ¥ i ] °
§ -
]
T 3 4« 85 & 7 R
cell number
(a)

RMS errorwith 1% Gaussian random noise 2k distance

Ak = 168,
a

ik, = 133K
[ ]

AK_, =+ 083k,

a3

.73

resolud onfa)

(b)

s

B =£2.5k,

* exacivaiue

w distxnce : {2
(Q cistance : 0.8
o dixtance 1 0.2%
A distance 1010

FIGURE 5. Iterative reconstruction of dielectric profile
of 24 cells in Figure 4. (a) Bandwidth is fixed by 5kg
and the distance of the measurement plane changes from
0.1A to 1)\ when 1% of Gaussian noise is present in the
scattered fields. {b) RMS reconstruction error increases
as the resolution increases from 0.6\ to 0.1A when the
measurement distance is fixed by 2\ and 1% Gaussian
noise is present in the scattered fields.
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