• Title/Summary/Keyword: Reconstruction error

Search Result 431, Processing Time 0.023 seconds

Power, mobility and wireless channel condition aware connected dominating set construction algorithm in the wireless ad-hoc networks (무선 에드 혹 네트워크에서 전력, 이동성 및 주변 무선 채널 상태를 고려한 연결형 Dominating Set 구성 방법)

  • Cho Hyoung-Sang;Yoo Sang-Jo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.5B
    • /
    • pp.274-286
    • /
    • 2005
  • In this paper, we propose a new power-efficient and reliable connected dominating set based routing protocol in the mobile ad hoc networks. Gateway nodes must be elected in consideration of residual energy and mobility because frequent reconstruction of connected dominating set result in transmission error for route losses. If node density is high, it results in a lot of contentions and more delays for network congestion. Therefore, in this paper, we propose a new construction method of connected dominating set that supports reliable and efficient data transmission through minimizing reconstruction of connected dominating set by delaying neighbor set advertisement message broadcast in proportion to weighted sum of residual energy, mobility, and the number of neighbor nodes. The performance of the proposed protocol is proved by simulation of various conditions.

Stereo Object Tracking System using Multiview Image Reconstruction Scheme (다시점 영상복원 기법을 이용한 스테레오 물체추적 시스템)

  • Ko, Jung-Hwan;Ohm, Woo-Young
    • 전자공학회논문지 IE
    • /
    • v.43 no.2
    • /
    • pp.54-62
    • /
    • 2006
  • In this paper, a new stereo object tracking system using the disparity motion vector is proposed. In the proposed method, the time-sequential disparity motion vector can be estimated from the disparity vectors which are extracted from the sequence of the stereo input image pair and then using these disparity motion vectors, the area where the target object is located and its location coordinate are detected from the input stereo image. Basing on this location data of the target object, the pan/tilt embedded in the stereo camera system can be controlled and as a result, stereo tracking of the target object can be possible. From some experiments with the 2 frames of the stereo image pairs having $256\times256$ pixels, it is shown that the proposed stereo tracking system can adaptively track the target object with a low error ratio of about 3.05 % on average between the detected and actual location coordinates of the target object.

3D Head Modeling using Depth Sensor

  • Song, Eungyeol;Choi, Jaesung;Jeon, Taejae;Lee, Sangyoun
    • Journal of International Society for Simulation Surgery
    • /
    • v.2 no.1
    • /
    • pp.13-16
    • /
    • 2015
  • Purpose We conducted a study on the reconstruction of the head's shape in 3D using the ToF depth sensor. A time-of-flight camera (ToF camera) is a range imaging camera system that resolves distance based on the known speed of light, measuring the time-of-flight of a light signal between the camera and the subject for each point of the image. The above method is the safest way of measuring the head shape of plagiocephaly patients in 3D. The texture, appearance and size of the head were reconstructed from the measured data and we used the SDF method for a precise reconstruction. Materials and Methods To generate a precise model, mesh was generated by using Marching cube and SDF. Results The ground truth was determined by measuring 10 people of experiment participants for 3 times repetitively and the created 3D model of the same part from this experiment was measured as well. Measurement of actual head circumference and the reconstructed model were made according to the layer 3 standard and measurement errors were also calculated. As a result, we were able to gain exact results with an average error of 0.9 cm, standard deviation of 0.9, min: 0.2 and max: 1.4. Conclusion The suggested method was able to complete the 3D model by minimizing errors. This model is very effective in terms of quantitative and objective evaluation. However, measurement range somewhat lacks 3D information for the manufacture of protective helmets, as measurements were made according to the layer 3 standard. As a result, measurement range will need to be widened to facilitate production of more precise and perfectively protective helmets by conducting scans on all head circumferences in the future.

Multi Channel UWB Data Transmission System for Multimedia Communication (멀티미디어 통신을 위한 다채널 UWB 데이터 전송 시스템)

  • Noh, Jin-Soo;Rhee, Kang-Hyeon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.42 no.6
    • /
    • pp.101-108
    • /
    • 2005
  • In this paper, we proposed a new algorithm of pulse generation and detection for the UWB multimedia communication system. The existing UWB systems using Gaussian pulse have some difficulties to cope with bandwidth limitation and frequency transition. In this paper, we introduce a new pulse generation method, which is able to control the bandwidth and center frequency that applies to the frequency modulation method, thus the proposed algorithm could improve the detection performance of receiving. And we proposed the multi channel transmission algorithm which transmits 1 channel synthesized at same time using the wavelet synthesis filter. Because of wavelet filter's perfect reconstruction property, the BER(Bit Error Rate) of transmission data is not changed by the number of accessed user. BER is changed only the property of channel transmission. By the results of simulation, when shift SNR from 2dB to 8dB on AWGN channel, we confirmed that the proposed algerian has $3.9063{\times}10^{-4}$ BER at 4dB SNR(AWGN channel).

Inverse Scattering Technique with Series Expanded Field of Dielectric Cylinders in Angular Spectral Domain (각스펙트럼 영역에서 전개함수 전계를 이용한 유전체 실린더에서의 역산란)

  • Kim, Ha-Chul;Choi, Hyun-Chul;Son, Hyon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.5
    • /
    • pp.698-707
    • /
    • 1998
  • For inverse scattering problems reconstructing cross-sectional permittivity distributions of dielectric cylinders, the angular spectral inverse technique using the moment method with pulse basis function suffers from large reconstruction error even if very small noise due to requiring the higher spectral informations on the larger cross-section of the cylinder. To reduce the number of higher-order spectra, this paper presents an improved inverse technique in angular spectral domain applying the moment procedure with a series-expansion basis function for the induced field in each enlarged cross-sectional cell. By choosing adequate spectra and averaging over the enlarged cells with a suitable weighting function, the reconstruction profiles reveal fine enough to suppress the noise effect significantly.

  • PDF

A Study on the self-tuning of the design variables and gains using Fuzzy PI+D Controller (퍼지 PI+D 제어기를 이용한 설계변수와 이득의 자기동조에 관한 연구)

  • Jang, Cheol-Su;Choi, Jeong-Won;Oh, Young-Seok;Chae, Seog
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.3
    • /
    • pp.355-367
    • /
    • 2007
  • This paper proposes a design method of the PI(Proportional-Integral)+D(Derivative) controller using self-tuning of the design variables and controller gains. The used fuzzy PI+D controller is the approximated conventional continuos time linear PI+D controller and the used fuzzification method is the fuzzy single tone and the adapted defuzzification method is the simplified tenter of gravity. Fuzzy estimation result would be calculated in the other function elements from the classified fuzzy variables and the result determined by the design variables decides the controller gains. As a result, the proposed method shows the capability of the high speed tuning and can be applied to the case of input variables with many fuzzy partitions and also can bring out the advantage to reduce the reconstruction(digital sampling reconstruction) error. Most simulation results show that this controller makes much bettor efficiency and improvement by using design variables and controller gains.

Developments of a Cross-Correlation Calculation Algorithm for Gas Temperature Distributions Based on TDLAS (레이저흡수분광법(TDLAS) 기반 가스온도분포 산정을 위한 상호상관계산 알고리듬 개발)

  • CHOI, DOOWON;KIM, KWANGNAM;CHO, GYONGRAE;SHIM, JOONHWAN;KIM, DONGHYUK;DEGUCHI, YOSHIHIRO;DOH, DEOGHEE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.1
    • /
    • pp.127-134
    • /
    • 2016
  • Most of reconstruction algorithms for the calculation of temperature distributions in CT (computed tomography)-TDLAS (tunable diode laser absorption spectroscopy) are based upon two-line thermometry method. This method gives unstable calculation convergence due to signal noise, bias error, and signal mis-matches. In this study, a new reconstruction algorithm based on cross-correlation for temperature calculation is proposed. The patterns of the optical signals at all wave lengths were used to reconstruct the temperature distribution. Numerical test has been made using phantom temperature distributions. Using these phantom temperature data, absorption spectra for all wave lengths were constructed, and these spectra were regarded as the signals that would be obtained in an actual experiments. Using these virtually generated experimental signals, temperature distribution was once again reconstructed, and was compared with those of the original phantom data. Calculation errors obtained by the newly proposed algorithm were slightly large at high temperatures with small errors at low temperature.

Anisotropic Total Variation Denoising Technique for Low-Dose Cone-Beam Computed Tomography Imaging

  • Lee, Ho;Yoon, Jeongmin;Lee, Eungman
    • Progress in Medical Physics
    • /
    • v.29 no.4
    • /
    • pp.150-156
    • /
    • 2018
  • This study aims to develop an improved Feldkamp-Davis-Kress (FDK) reconstruction algorithm using anisotropic total variation (ATV) minimization to enhance the image quality of low-dose cone-beam computed tomography (CBCT). The algorithm first applies a filter that integrates the Shepp-Logan filter into a cosine window function on all projections for impulse noise removal. A total variation objective function with anisotropic penalty is then minimized to enhance the difference between the real structure and noise using the steepest gradient descent optimization with adaptive step sizes. The preserving parameter to adjust the separation between the noise-free and noisy areas is determined by calculating the cumulative distribution function of the gradient magnitude of the filtered image obtained by the application of the filtering operation on each projection. With these minimized ATV projections, voxel-driven backprojection is finally performed to generate the reconstructed images. The performance of the proposed algorithm was evaluated with the catphan503 phantom dataset acquired with the use of a low-dose protocol. Qualitative and quantitative analyses showed that the proposed ATV minimization provides enhanced CBCT reconstruction images compared with those generated by the conventional FDK algorithm, with a higher contrast-to-noise ratio (CNR), lower root-mean-square-error, and higher correlation. The proposed algorithm not only leads to a potential imaging dose reduction in repeated CBCT scans via lower mA levels, but also elicits high CNR values by removing noisy corrupted areas and by avoiding the heavy penalization of striking features.

Precise System Models using Crystal Penetration Error Compensation for Iterative Image Reconstruction of Preclinical Quad-Head PET

  • Lee, Sooyoung;Bae, Seungbin;Lee, Hakjae;Kim, Kwangdon;Lee, Kisung;Kim, Kyeong-Min;Bae, Jaekeon
    • Journal of the Korean Physical Society
    • /
    • v.73 no.11
    • /
    • pp.1764-1773
    • /
    • 2018
  • A-PET is a quad-head PET scanner developed for use in small-animal imaging. The dimensions of its volumetric field of view (FOV) are $46.1{\times}46.1{\times}46.1mm^3$ and the gap between the detector modules has been minimized in order to provide a highly sensitive system. However, such a small FOV together with the quad-head geometry causes image quality degradation. The main factor related to image degradation for the quad-head PET is the mispositioning of events caused by the penetration effect in the detector. In this paper, we propose a precise method for modelling the system at the high spatial resolution of the A-PET using a LOR (line of response) based ML-EM (maximum likelihood expectation maximization) that allows for penetration effects. The proposed system model provides the detection probability of every possible ray-path via crystal sampling methods. For the ray-path sampling, the sub-LORs are defined by connecting the sampling points of the crystal pair. We incorporate the detection probability of each sub-LOR into the model by calculating the penetration effect. For comparison, we used a standard LOR-based model and a Monte Carlo-based modeling approach, and evaluated the reconstructed images using both the National Electrical Manufacturers Association NU 4-2008 standards and the Geant4 Application for Tomographic Emission simulation toolkit (GATE). An average full width at half maximum (FWHM) at different locations of 1.77 mm and 1.79 mm are obtained using the proposed system model and standard LOR system model, which does not include penetration effects, respectively. The standard deviation of the uniform region in the NEMA image quality phantom is 2.14% for the proposed method and 14.3% for the LOR system model, indicating that the proposed model out-performs the standard LOR-based model.

3D-Distortion Based Rate Distortion Optimization for Video-Based Point Cloud Compression

  • Yihao Fu;Liquan Shen;Tianyi Chen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.2
    • /
    • pp.435-449
    • /
    • 2023
  • The state-of-the-art video-based point cloud compression(V-PCC) has a high efficiency of compressing 3D point cloud by projecting points onto 2D images. These images are then padded and compressed by High-Efficiency Video Coding(HEVC). Pixels in padded 2D images are classified into three groups including origin pixels, padded pixels and unoccupied pixels. Origin pixels are generated from projection of 3D point cloud. Padded pixels and unoccupied pixels are generated by copying values from origin pixels during image padding. For padded pixels, they are reconstructed to 3D space during geometry reconstruction as well as origin pixels. For unoccupied pixels, they are not reconstructed. The rate distortion optimization(RDO) used in HEVC is mainly aimed at keeping the balance between video distortion and video bitrates. However, traditional RDO is unreliable for padded pixels and unoccupied pixels, which leads to significant waste of bits in geometry reconstruction. In this paper, we propose a new RDO scheme which takes 3D-Distortion into account instead of traditional video distortion for padded pixels and unoccupied pixels. Firstly, these pixels are classified based on the occupancy map. Secondly, different strategies are applied to these pixels to calculate their 3D-Distortions. Finally, the obtained 3D-Distortions replace the sum square error(SSE) during the full RDO process in intra prediction and inter prediction. The proposed method is applied to geometry frames. Experimental results show that the proposed algorithm achieves an average of 31.41% and 6.14% bitrate saving for D1 metric in Random Access setting and All Intra setting on geometry videos compared with V-PCC anchor.