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This study aims to develop an improved Feldkamp-Davis-Kress (FDK) reconstruction algorithm 
using anisotropic total variation (ATV) minimization to enhance the image quality of low-dose cone-
beam computed tomography (CBCT). The algorithm first applies a filter that integrates the Shepp-
Logan filter into a cosine window function on all projections for impulse noise removal. A total 
variation objective function with anisotropic penalty is then minimized to enhance the difference 
between the real structure and noise using the steepest gradient descent optimization with 
adaptive step sizes. The preserving parameter to adjust the separation between the noise-free and 
noisy areas is determined by calculating the cumulative distribution function of the gradient 
magnitude of the filtered image obtained by the application of the filtering operation on each 
projection. With these minimized ATV projections, voxel-driven backprojection is finally performed 
to generate the reconstructed images. The performance of the proposed algorithm was evaluated 
with the catphan503 phantom dataset acquired with the use of a low-dose protocol. Qualitative 
and quantitative analyses showed that the proposed ATV minimization provides enhanced CBCT 
reconstruction images compared with those generated by the conventional FDK algorithm, with a 
higher contrast-to-noise ratio (CNR), lower root-mean-square-error, and higher correlation. The 
proposed algorithm not only leads to a potential imaging dose reduction in repeated CBCT scans 
via lower mA levels, but also elicits high CNR values by removing noisy corrupted areas and by 
avoiding the heavy penalization of striking features.
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Introduction

Volumetric imaging, such as cone-beam computed to-

mography (CBCT) or megavoltage computed tomography, 

is being extensively adapted as a commonly used approach 

in image guided radiation therapy (IGRT).1) In particular, 

CBCT mounted on the gantry of the linear accelerator has 

been utilized not only for the patient setup, but also for the 

continuous monitoring of any target motion throughout 

the treatment delivery process.2,3) In current protocols, the 

cumulative imaging dose from CBCT cannot be ignored 

when a patient is imaged daily during the entire treatment 

course that lasts 4 to 6 weeks.4) If a reasonable image qual-

ity can be obtained with a low dose, it is obvious that com-

pliance is ensured regarding the low dose protocol acquisi-

tion. The most practical way to reduce the dose of a CBCT 

system is to use either a lower tube current or a shorter 

exposure time per projection.5) These attempts lead to sig-
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nificantly degraded CBCT image qualities when analytical 

reconstruction algorithms are used, such as the Feldkamp–

Davis–Kress (FDK) method,6) because their performances 

are considerably influenced by the filtering process. An ef-

ficient denoising technique7,8) is thus required to enhance 

the difference of the signals between the real structures 

and unwanted noise to achieve better CBCT image quality.

We propose an improved FDK-based CBCT reconstruc-

tion algorithm according to anisotropic filtration of pro-

jection data at low mA values. The proposed approach is 

based on the framework of the standard FDK algorithm. 

The algorithm first applies a modified filter on all projec-

tions for impulse noise removal. Anisotropic total variation 

(ATV) denoising is then applied on the filtered projection 

data. Minimizing the ATV objective function using the 

steepest gradient descent optimization with the use of an 

adaptive step size ensures that edges which have a high 

contrast relative to the surroundings will be preserved, and 

noisy pixels which have a low contrast will be smoothed. 

With the use of these projections with ATV denoising, the 

voxel-driven backprojector is finally performed to generate 

the reconstructed images. The effectiveness of the pro-

posed method is demonstrated by a phantom study.

Materials and Methods

1. Filtration step for filtered projection data

A circular preweighting factor is first applied on each log-

transformed projection data to avoid decreases in intensity 

owing to the cone angle effect. The circular preweighting of 

a projection is formulated as
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where p(θ, u, v) is the log-transformed value at position of 

(u, v) in a given projection at an angle θ, and D is the dis-

tance from the beam source to the detector. Each horizon-

tal line of preweighted projection data (P) is converted to 

the frequency domain with the use of the 1-dimensional (1–

D) Fourier transformation. The Fourier-transformed values 

are multiplied by the modified filter which is used as a 1–D 

ramp filter to suppress the highest spatial frequencies. The 

modified filter consists of the product of the Shepp–Logan 

filter and a cosine window function defined in the fre-

quency domain, as shown in Fig. 1. This is also expressed 

according to Eq. (2):

H (ω)= sin ω
 (0.515+0.485 cos ω), −π<ω<π. 2      (2)

Each horizontal line in the preweighted projection data 

is converted to the frequency domain by 1–D Fourier trans-

formation. Accordingly, the Fourier transformed horizontal 

line is multiplied by the modified filter. Based on the appli-

cation of the inverse Fourier transformation, we can obtain 

filtered projection data with reduced impulse noise.

2. Anisotropic total variation minimization

A total variation (TV) denoising9) is applied on filtered 

projections to enhance the difference of the signals be-

tween the striking features and unwanted noise by com-

bining the conduction coefficient used in the anisotropic 

diffusion filter.10) Minimizing the ATV objective function 

indicates that edges with high contrast relative to the sur-

roudings are preserved, and noisy voxels with low contrast 

are smoothed. The anisotropic penalty11) with different 

weights for neighbors at the same distance in the TV object 

function can be expressed as follows:
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Fig. 1. 1–D ramp filter.
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where index j identifies the index of pixel element in the 

filtered projection, and P(u, v) is the pixel element at the 

2D position (u, v). Equivalently, Nj represents the set of 

neighbors of the jth pixel element. We only considered four 

first-order neighbors in the study. As shown in Fig. 2, the 

parameter δ  was set to 90% of the cumulative distribution 

function (CDF) histogram. The histogram was created by 

accumulating the gradient magnitude at each pixel of the 

filtered projection data.

The ATV objective function of Eq. (3) is minimized us-

ing the steepest gradient descent method with an adaptive 

step size,9,12) and is expressed as follows, 
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where λ is an adaptive parameter that controls the step 

size so that the smoothing degree is decreased in advance 

according to the number of iteration steps. By using the 

squared-root value of all pixel elements updated in each 

steepest gradient descent step, this parameter is forced to 

progressively acquire smaller values as a function of the 

number of iterations. To avoid a local minimum owing to 

abrupt changes, we use a scaling parameter γ  and set it to 

0.1 initially. If the R(P) calculated at the current iteration 

step is larger the value calculated at the previous step, this 

value is linearly decreased by multiplying a constant value.   

∇R(Pj) is the gradient of the objective function R(P) at the 

jth indexed pixel. Accordingly, the root-square sum of the 

gradient calculated at all pixels, |∇R(P)|, is needed for the 

normalized gradient calculation. The optimal number of 

iterations for the steepest gradient descent step was fine-

tuned so that the number of noisy pixels was minimized, 

while the bony structures were maintained. In this study, 

the number of iterations for the steepest gradient descent 

step was set to 20.

3. Voxel-driven backprojector 

Voxel-driven backprojection was performed with the 

ATV filtered-projection data. Given a position vector r (or 

the equivalent spatial coordinates rx, ry, and rz) of any voxel, 

the corresponding ith projection data at a given angle θ 

and at positions u(r) and v(r) are obtained as follows,

P(θ, r)=Pi (θ, u(r), v(r)),                               (8)

where

u(r)=
rxθ

D, 
d+ryθ                                     (9)

v(r)=
rzθ

D.
d+ryθ                                   (10)

Herein, d is the source-to-axis distance, and D is the 

source-to-detector distance. Accordingly, the rotation vec-

tors [rxθ, ryθ, rzθ]
T are calculated by applying the rotation ma-

trix by a given angle θ from the origin of the reconstructed 

images.

The final attenuation coefficient value μ(r) at a position 

vector r is weighted and expressed as,
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Fig. 2. Example of the CDF plot generated with the gradient 
magnitude calculated at all the pixels of the filtered projection 
data.
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w(r)=
d2

,  
(d+ryθ)2                                    

(12)

where w(r) is the depth weighting, and Np is the total 

number of projection data. Every voxel is derived from all 

the filtered projection data and is normalized by Np in the 

backprojection step. 

4. Experimental studies

Qualitative and quantitative comparisons were per-

formed using the catphan503 (The Phantom Laboratory, 

Salem, NY). The phantom was aligned using the three or-

thogonal laser beams with its superior/inferior direction 

along the longitudinal direction of the couch. The CBCT 

projection data were acquired with XVI R5.0 (Elekta Limit-

ed, Stockholm, Sweden), which consisted of a kV radiation 

source mounted on the InfinityTM linear accelerator sys-

tem. When the gantry rotates around the patient’s couch, a 

series of projections was acquired with the total rotation of 

360° with a small field-of-view (FOV) protocol, a S20 colli-

mator, an F0 filter, and without a bow-tie filter. The number 

of projections for a full scan is approximately 665. The di-

mension of each projection acquried on the image recep-

tor was 409.6×409.6 mm2 which contained 1024×1024 

pixels2. The source-to-detector distance was 1536 mm and 

the source-to-axis distance was 1000 mm. For a low-dose 

CBCT protocol, the X-ray tube current was set to 10 mA 

and the duration of the X-ray pulse was 10 ms during the 

data acquisition of each projection. The tube voltage was 

set to 100 kVp. The reconstructed images were generated 

with a size of 512×512×200 voxels3 where the voxel size 

was 0.5×0.5×0.5 mm3. A high-dose CBCT for a benchmark 

image was created with the application of the conventional 

FDK algorithm with projections acquired with increased 

mA settings (100 kVp, 40 mA, and 40 ms) for comparison 

purposes. All of the reconstructed images were converted 

to Hounsfield units (HU).

To quantitatively compare the relative image contrast be-

tween corresponding regions, we calculated the contrast-

to-noise ratio (CNR) at selected regions-of-interest (ROIs) 

in the reconstructed image as according to,

,
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where Minsert and δ insert respectively denote the mean and 

standard deviation HU values of the selected ROIs that 

included the voxels in each density insert, and Mcenter and 

δ center are the corresponding values for a centrally located 

ROI. The accuracy of the HU value in the ROIs selected 

in the density insert was then assessed by calculating the 

root-mean-square error (RMSE), which was defined as
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where i
insertM   and i

insertM   denote the mean HU values of the 
ith ROI in the reconstructed and benchmark CBCT images, 

respectively, and NROI is the total number of selected ROIs.

To further evaluate the overall reconstruction differences 

between the reconstructed and benchmark CBCT images, 

we calculated the correlation according to 
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where l
im   and Ml are respectively the HU value at voxel i 

and the average HU values of the images reconstructed by 

the FDK with the Shepp–Logan filter, by FDK with a modi-

fied filter, and by the proposed methods using low-dose 

projection data. Equivalently, h
im   and Mh are the HU values 

at voxel i and the average HU values of the benchmark im-

age. N denotes all the numbers of voxels to be considered 

in the reconstructed images. In general, lower RMSE and 

higher correlation values yield better results.

Results

The performance of the ATV denoised FDK reconstruc-

tion algorithm was compared with those of the Shepp–

Logan filtered FDK and the modified filtered FDK algo-

rithms. Fig. 3 shows CBCT images of a representative slice 

of the phantom obtained by the three FDK algorithms. The 
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abrupt changes between adjacent voxels when the Shepp–

Logan filter was used were significantly decreased by the 

application of the modified filter. After the addition of ATV 

denoising, the changes in the homogeneous region were 

more smoothed whereas features with different densities 

were preserved quite well. This indicates that the proposed 

method can spare noise effectively and avoids the heavy 

penalization of striking edges.

Furthermore, we calculated the CNR at selected ROI in 

the reconstructed image. It is possible to assess a com-

parison of relative image contrast between correspond-

ing regions. Table 1 compares CNRs at seven ROIs in the 

reconstructed image generated by FDK with the Shepp–

Logan, FDK with the modified filter, and with the proposed 

methods. The proposed method shows the improved CNR 

in all the ROIs compared to the corresponding values elic-

ited by the other two algorithms.

Fig. 4 shows the proposed FDK method with projections 

acquired at low mAs and the conventional FDK algorithm 

with projections acquired at high mAs to allow the qualita-

tive evaluation of the correspondence between the two re-

constructed images. It is observed that the proposed meth-

a b c

Fig. 3. Comparisons of the same 
views of the reconstructed image 
generated by applying (a) FDK with 
the Shepp–Logan filter, (b) FDK 
with a modified filter, and (c) FDK 
with ATV. The top row contains the 
CTP404 module and the bottom row 
contains the CTP486 module. All the 
images are displayed using W=1600 
and L=200 HU.

Table 1. Comparison of contrast-to-noise rations at seven ROIs 
in the reconstructed images generated based on three FDK 
algorithms with low-dose projection data of the catphan503 
phantom (CTP404). 

ROI
FDK with 

Shepp-Logan 
filter

FDK with 
modified filter

FDK with ATV

1 3.15 6.29 11.69

2 5.50 12.94 23.66

3 4.84 11.59 23.14

4 0.05 0.48 1.36

5 0.38 0.81 1.64

6 0.87 1.58 2.76

7 5.14 11.64 23.09

a b

Fig. 4. Comparison of reconstructed images for a representative 
slice generated by applying (a) conventional FDK using high-dose 
projections and (b) FDK with ATV using low-dose projections. 
These images, including the CTP528 module, are displayed using 
W=2400 and L=200 HU.
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od yields a spatial resolution comparable to high-dose 

CBCT imaging based on visual inspection. Table 2 lists two 

quantitative measures (RMSE and correlation) obtained 

from the reconstructed images based on the three FDK 

reconstruction methods. It is observed that the proposed 

method elicits a lower RMSE and a higher correlation com-

pared to the other two algorithms. 

Discussion

An improved FDK reconstruction algorithm for low-dose 

CBCT imaging has been developed by adding ATV denois-

ing in the filtering process. The reconstructions of phan-

tom data implemented with the proposed method indicate 

that a higher image quality can be achieved with projec-

tion data acquired with the low mA protocol. We have also 

found that the proposed method generated images with 

CNR values and spatial resolution comparable to the imag-

es reconstructed with projections acquired with the high-

dose protocol. Moreover, ATV denoising elicited filtered 

projection data with a greatly reduced noise in compari-

son to conventional filtering. The alternative way for low-

dose CBCT is to consider the use of compressed sensing 

(CS) in the iterative reconstruction algorithm.13-15) The CS 

method is executed by minimizing a TV objective func-

tion subject to data fidelity and physical constraints based 

on constrained or nonconstrained optimization methods. 

However, in practical applications this approach is mainly 

limited by their high-computational demands because the 

reprojection and backprojection steps are iteratively per-

formed for the fidelity calculation between measured and 

estimated projections. 

Several edge preserving filters have been proposed for 

use to reduce the noise of fan-beam CT images based on 

the local characteristics of the projection data elements.16) 

Unlike the fan-beam CT where the scatter signal is mini-

mized through the divergent collimator, the scatter signal 

of the CBCT projection data is not effectively suppressed 

through hardware only. The presence of the scatter signal 

can cause artifacts in the reconstructed CBCT image and 

can also alter the noise characteristics of the CBCT projec-

tion data.15,17)

The ATV method works within the FDK framework, and 

provides increased speed owing to use of a single filtering 

and single backprojection processes. This analytical ap-

proach assumes that a sufficient number of projections are 

acquired during a single-gantry rotation. Thus, we identi-

fied the optimal parameters for ATV denoising by using 

the entire number of projections and by obtaining recon-

structed CBCT images with higher quality given the noise 

suppression and edge preservation. The projections used 

in our experiments were acquired in small-FOV acquisi-

tion modes only. The method, however, has potential for 

applications in all imaging acquisition modes. In terms of 

computation time, the FDK with ATV denoising took ap-

proximately four times longer than the conventional FDK 

algorithm. Given that OpenMP was used to parallelize the 

proposed algorithm on the CPU platform, we can easily ex-

tend its use to the GPU.18)

Conclusion

The proposed algorithm achieved imaging dose reduc-

tions in repeated CBCT scans with the use of low mA levels 

and also yielded high contrast-to-noise CBCT images. This 

was achieved by the removal of noisy corrupted areas, 

and by prevention of penalization of striking features. This 

work may have significant implications in image-guided or 

adaptive radiation therapy given the current, widespread 

use of CBCT.
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