• Title/Summary/Keyword: Reconsolidation

Search Result 13, Processing Time 0.03 seconds

Effect of Intensity of Unconditional Stimulus on Reconsolidation of Contextual Fear Memory

  • Kwak, Chul-Jung;Choi, Jun-Hyeok;Bakes, Joseph T.;Lee, Kyung-Min;Kaang, Bong-Kiun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.5
    • /
    • pp.293-296
    • /
    • 2012
  • Memory reconsolidation is ubiquitous across species and various memory tasks. It is a dynamic process in which memory is modified and/or updated. In experimental conditions, memory reconsolidation is usually characterized by the fact that the consolidated memory is disrupted by a combination of memory reactivation and inhibition of protein synthesis. However, under some experimental conditions, the reactivated memory is not disrupted by inhibition of protein synthesis. This so called "boundary condition" of reconsolidation may be related to memory strength. In Pavlovian fear conditioning, the intensity of unconditional stimulus (US) determines the strength of the fear memory. In this study, we examined the effect of the intensity of US on the reconsolidation of contextual fear memory. Strong contextual fear memory, which is conditioned with strong US, is not disrupted by inhibition of protein synthesis after its reactivation; however, a weak fear memory is often disrupted. This suggests that a US of strong intensity can inhibit reconsolidation of contextual fear memory.

Liquefaction and post-liquefaction behaviour of a soft natural clayey soil

  • Kheirbek-Saoud, Siba;Fleureau, Jean-Marie
    • Geomechanics and Engineering
    • /
    • v.4 no.2
    • /
    • pp.121-134
    • /
    • 2012
  • The paper presents the results of identification, monotonous and cyclic triaxial tests on a potentially liquefiable soil from the Guadeloupe island. The material is a very soft clayey soil whose susceptibility to liquefaction is not clear when referring to index properties such as grain size distribution, plasticity, etc. The classifications found in the literature indicate that the material has rather a "clay-like" behaviour, i.e., is not very susceptible to liquefaction, but its properties are very close to the threshold values given by the authors. Cyclic triaxial tests carried out on the material under different conditions show that liquefaction is possible for a relatively important level of cyclic deviator or number of cycles. The second part of the paper is devoted to the study of the recovery of the soil after liquefaction and possibly reconsolidation. For the specimens tested without reconsolidation, that simulated the soil immediately after an earthquake, the recovery is nearly non-existent but the drop in pore pressure during extension results in a small available strength. On the contrary, after reconsolidation, the increase in strength of the liquefied specimens is quite large, compared to the initial state, but with unchanged failure envelopes.

The Future Directions for System Integration (시스템 통합의 발전방향)

  • Lee Soonchul;Jung Byounghun;Oh Buyeon;Lee Younghee
    • Journal of Information Technology Applications and Management
    • /
    • v.12 no.1
    • /
    • pp.1-19
    • /
    • 2005
  • Economy of scale would be one of the most important issues among organizations pursuing system integration projects. Cerntainly there are other benefits than cost reduction for achieving system integration. However. these benefits could not be achieved automatically. if system integration projects were undertaken without thoughtful planning. In this paper. we propose a framework for an effective system integration by (1) defining the objects(user interface. database. application. and server) and (2) considering the level of integration(physical integration and rational integration). Therefore. 6 types of integration can be considered. Five case studies of domestic organizations were reviewed to suggest various issues and solutions. Based on our case studies. we discovered that five integration types - EIP. EAI. ERP. BPM and System Reconsolidation - were most widely used.

  • PDF

Behaviour of Nak-dong River Sand on Cyclic Stress History (낙동강 모래의 반복응력이력에 의한 거동)

  • 김영수;박명렬;김병탁;이상복
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.295-302
    • /
    • 2000
  • Earthquakes not only produce additional load on the structures and underlying soil, but also change the strength characteristics of the soil. Therefore, in order to analyze soil structures for stability, the behaviour after earthquake must be considered. In this paper, a series of cyclic triaxial tests and monotonic triaxial tests were carried out to investigate the undrained shear strength and liquefaction strength characteristics of Nak-Dong River sand soils which were subjected to cyclic loading. The sample was consolidated in the first stage and then subjected to stress controlled cyclic loading with 0.1Hz. After the cyclic loading, the cyclic-induced excess pore water pressure was dissipated by opening the drainage valve and the sample was reconsolidated to the initial effective mean principal stress(p/sub c/'). After reconsolidation, the monotonic loading or cyclic loading were applied to the specimen. In the results, the undrained shear strength and liquefaction strength characteristics depended on the pore pressure ratio(Ur=U/p/sub c/'). The volume change following reconsolidation can be a function of cyclic-induced excess pore water pressure and the maximum double amplitude of axial strain.

  • PDF

STRENGTH CHANGES OF SURROUNDING CLAY DUE TO SOIL-CEMENT COLUMN INSTALLATION

  • Miura, Norihiko
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1997.10a
    • /
    • pp.19-36
    • /
    • 1997
  • This paper discusses the reduction and subsequent recovery and increase of shear strength of clay in the vicinity of soil-cement column. Laboratory and field tests were conducted to investigate the effects on surrounding clay during and after soil-cement column installation in soft Ariake clay. Discussions were made on the mechanism of strength changes of clay by considering the thixotropic recovery, reconsolidation effect, penetration of cement slurry and diffusion of exchangeable cations. On the basis of field and laboratory observations, 10 days after column installation, the decreased shear strength of surrounding clay during mixing was recovered and 30 days later, shear strength of surrounding clay increased 30% by average. Therefore, it is recommended that the increase of shear strength of clay can be taken into consideration in the bearing capacity and stability analysis of the composite ground.

  • PDF

Mechanical Charateristics of Remolded Clay and Simulation of Aging Effect with Curing Condition (양생조건에 따른 연대효과의 재현과 재압밀점토의 역학특성)

  • Kim, Chan-Kee;Kook, Hyoun-Sook;Park, Man-Gyu;Hong, Zee-Woong
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.353-356
    • /
    • 2002
  • In this study, the clay samples collected in the area Mokpo carry out laboratory soil test. Under three different curing $temperature-20^{\circ}C,\;50^{\circ}C,\;80^{\circ}C$ and 4 terms of curing day -1day, 7days, 14days, 40days for each, the remolded and reconsolidated samples had been made. To find out an aging effects and geotechnical characteristics between undisturbed samples and reconsolidated samples, laboratory tests were preformed. In the results, it was found that mechanical properties of undisturbed natural samples were similar to high temperature reconsolidation clay. The curing temperature influence on simulating aging effect more than the curing day does and the best curing condition are $80^{\circ}C$, 27days.

  • PDF

Neural Circuit and Mechanism of Fear Conditioning (공포 조건화 학습의 신경회로와 기전)

  • Choi, Kwang-Yeon
    • Korean Journal of Biological Psychiatry
    • /
    • v.18 no.2
    • /
    • pp.80-89
    • /
    • 2011
  • Pavlovian fear conditioning has been extensively studied for the understanding of neurobiological basis of memory and emotion. Pavlovian fear conditioning is an associative memory which forms when conditioned stimulus (CS) is paired with unconditioned stimulus (US) once or repeatedly. This behavioral model is also important for the understanding of anxiety disorders such as posttraumatic stress disorder. Here we describe the neural circuitry involved in fear conditioning and the molecular mechanisms underlying fear memory formation. During consolidation some memories fade out but other memories become stable and concrete. Emotion plays an important role in determining which memories will survive. Memory becomes unstable and editable again immediately after retrieval. It opens the possibility for us of modulating the established fear memory. It provides us with very efficient tools to improve the efficacy of cognitive-behavior therapy and other exposure-based therapy treating anxiety disorders.

Post-Cyclic Deformation Behavior of Non-Liquefied Weathered Soils (반복재하후 미액상화 풍화토 지반의 변형 거동)

  • 최연수;정충기
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.485-492
    • /
    • 2001
  • Weathered soil is one of the most representative soils in Korea. In this study, a series of cyclic triaxial tests was carried out to predict the post-cyclic deformation behavior of weathered soils in case of non-liquefaction. Excess pore pressure response during cyclic loading and volumetric strain during the dissipation of excess pore pressure were measured varying the confining pressure, relative density and cyclic stress ratio. Based on the test results, it Is found that the modified excess pore pressure ratio, excess pore pressure ratio normalized by cyclic stress ratio, is uniquely correlated with the number of cycles irrespective of confining pressure and cyclic stress ratio. Using the newly proposed MEPPR(modified excess pore pressure ratio) concept, it is possible to easily evaluate the excess pore pressure and the settlement of weathered soils due to cyclic loading by greatly reduced number of tests. It is also verified that the reconsolidation volumetric strain is independent of the way how the excess pore pressure was generated.

  • PDF

A Reliability Analysis of Liquefaction Potential Induced by Ocean Wave (해양(海洋) 구조물(構造物) 지반(地盤)의 액상화(液狀化) 가능성(可能性)에 대한 신뢰도(信賴度) 해석(解析))

  • Kim, Joon Seok;Lee, In Mo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.4
    • /
    • pp.41-48
    • /
    • 1988
  • A model for predicting the probability of liquefaction induced by the ocean storm-wave is developed. Many uncertainties are encountered in the analysis of liquefaction potential for the foundation of offshore structures : (1) the storm-wave duration, (2) the effect of reconsolidation, (3) the effect of patial drainage, etc. These uncertainties are formulated in probabilistic terms and used to assess the risk of liquefaction for a given offshore site. The model developed is applied to the Ekofisk oil storage tank in the North Sea installed in 1973. Reasonable comparison is obtained between the probabilities of liquefaction obtained and the results of deterministic models or the field observations. Among the un certainties encountered, it is revealed that the effect of reconsolidation is the most critical factor. Since many problems are encountered in the deterministic models developed so far, the probabilistic model developed in this paper might be a resonable alternative tool and can be used in the design of new offshore structures.

  • PDF