• Title/Summary/Keyword: Reconfigurable Processor

Search Result 56, Processing Time 0.017 seconds

A Fast SIFT Implementation Based on Integer Gaussian and Reconfigurable Processor

  • Su, Le Tran;Lee, Jong Soo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.2 no.3
    • /
    • pp.39-52
    • /
    • 2009
  • Scale Invariant Feature Transform (SIFT) is an effective algorithm in object recognition, panorama stitching, and image matching, however, due to its complexity, real time processing is difficult to achieve with software approaches. This paper proposes using a reconfigurable hardware processor with integer half kernel. The integer half kernel Gaussian reduces the Gaussian pyramid complexity in about half [] and the reconfigurable processor carries out a parallel implementation of a full search Fast SIFT algorithm. We use a low memory, fine grain single instruction stream multiple data stream (SIMD) pixel processor that is currently being developed. This implementation fully exposes the available parallelism of the SIFT algorithm process and exploits the processing and I/O capabilities of the processor which results in a system that can perform real time image and video compression. We apply this novel implementation to images and measure the effectiveness. Experimental simulation results indicate that the proposed implementation is capable of real time applications.

  • PDF

A Novel Reconfigurable Processor Using Dynamically Partitioned SIMD for Multimedia Applications

  • Lyuh, Chun-Gi;Suk, Jung-Hee;Chun, Ik-Jae;Roh, Tae-Moon
    • ETRI Journal
    • /
    • v.31 no.6
    • /
    • pp.709-716
    • /
    • 2009
  • In this paper, we propose a novel reconfigurable processor using dynamically partitioned single-instruction multiple-data (DP-SIMD) which is able to process multimedia data. The SIMD processor and parallel SIMD (P-SIMD) processor, which is composed of a number of SIMD processors, are usually used these days. But these processors are inefficient because all processing units (PUs) should process the same operations all the time. Moreover, the PUs can process different operations only when every SIMD group operation is predefined. We propose a processor control method which can partition parallel processors into multiple SIMD-based processors dynamically to enhance efficiency. For performance evaluation of the proposed method, we carried out the inverse transform, inverse quantization, and motion compensation operations of H.264 using processors based on SIMD, P-SIMD, and DP-SIMD. Experimental results show that the DP-SIMD control method is more efficient than SIMD and P-SIMD control methods by about 15% and 14%, respectively.

Effective Partitioning of Static Global Buses for Small Processor Arrays

  • Matsumae, Susumu
    • Journal of Information Processing Systems
    • /
    • v.7 no.1
    • /
    • pp.85-92
    • /
    • 2011
  • This paper shows an effective partitioning of static global row/column buses for tightly coupled 2D mesh-connected small processor arrays ("mesh", for short). With additional O(n/m (n/m + log m)) time slowdown, it enables the mesh of size $m{\times}m$ with static row/column buses to simulate the mesh of the larger size $n{\times}n$ with reconfigurable row/column buses ($m{\leq}n$). This means that if a problem can be solved in O(T) time by the mesh of size $n{\times}n$ with reconfigurable buses, then the same problem can be solved in O(Tn/m (n/m + log m)) time on the mesh of a smaller size $m{\times}m$ without a reconfigurable function. This time-cost is optimal when the relation $n{\geq}m$ log m holds (e.g., m = $n^{1-\varepsilon}$ for $\varepsilon$ > 0).

Design and Fabrication of High Energy Efficient Reconfigurable Processor for Mobile Multimedia Applications (모바일 멀티미디어 응용을 위한 고에너지효율 재구성형 프로세서의 설계 및 제작)

  • Yeo, Soon-Il;Lee, Jae-Heung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.11A
    • /
    • pp.1117-1123
    • /
    • 2008
  • Applications for mobile multimedia are testing the performance limits of present day CPUs with variety. However, hardwired solutions are inflexible and expensive to develop. CPUs with flexibility have limitation of performance. So, the requirement for both ASIC-like performance and CPU-like flexibility has led to reconfigurable processor. Mobile systems require low power and high performance concurrently. In this paper, we propose reconfigurable processor for mobile multimedia with high energy efficiency. Reconfigurable processor with 121MOPS/mW is developed by 130nm CMOS technology. And the processor was simulated for energy efficiency with 539MOPS/mW by 90nm CMOS technology and effective use of instructions. And we tested its applications for multimedia field. We tested the case of inverse MDCT for MP3 and DF for MPEG4 and ME for H.264.

Learning Module Design for Neural Network Processor(ERNIE) (신경회로망칩(ERNIE)을 위한 학습모듈 설계)

  • Jung, Je-Kyo;Kim, Yung-Joo;Dong, Sung-Soo;Lee, Chong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.171-174
    • /
    • 2003
  • In this paper, a Learning module for a reconfigurable neural network processor(ERNIE) was proposed for an On-chip learning. The existing reconfigurable neural network processor(ERNIE) has a much better performance than the software program but it doesn't support On-chip learning function. A learning module which is based on Back Propagation algorithm was designed for a help of this weak point. A pipeline structure let the learning module be able to update the weights rapidly and continuously. It was tested with five types of alphabet font to evaluate learning module. It compared with C programed neural network model on PC in calculation speed and correctness of recognition. As a result of this experiment, it can be found that the neural network processor(ERNIE) with learning module decrease the neural network training time efficiently at the same recognition rate compared with software computing based neural network model. This On-chip learning module showed that the reconfigurable neural network processor(ERNIE) could be a evolvable neural network processor which can fine the optimal configuration of network by itself.

  • PDF

Implementation of RRS-based Base station Communication platform using General-Purpose DSP (범용 DSP를 이용한 RRS 기반 기지국 통신 플랫폼 구현)

  • Kim, Hoil;Ahn, Heungseop;Choi, Seungwon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.14 no.4
    • /
    • pp.87-92
    • /
    • 2018
  • One of the problems with the base station equipment is that there is a large difference between the replacement time of the hardware equipment such as the base station equipment and the radio access equipment, and the evolution period of the communication standard. Therefore, the base station communication platform must be flexible enough to handle the evolving communication standards after purchase. Recent research on reconfigurable communications platforms has focused on the efficient architecture of the communications platform to meet these requirements through software downloads while still using existing hardware. This paper presents a prototype of a base station communications platform based on the ETSI standard reconfigurable architecture. The communication platform presented in this paper is implemented as an ETSI standard reconfigurable architecture using a general-purpose DSP (Digital Signal Processor). In the implemented prototype, we verify the real-time feasibility of communication protocol updates through software reconfiguration.

A Study on the variable points IFFT/FFT processor (재구성 가능한 가변 포인트 IFFT/FFT 프로세서 설계에 관한 연구)

  • Choi Won-Chul;Goo Jeon-Hyoung;Lee Hyun;Oh Hyun-Seo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.12
    • /
    • pp.61-68
    • /
    • 2004
  • Wireless mobile communication systems request high speed mobility and high speed data transmission capability. In order to meet the requirements, OFDM(Orthogonal Frequency Division Multiplex) is mainly adopted in the physical layer of the wireless systems. In commercial wireless mobile systems, IEEE802.(11a, 16e, etc) series seem to be used as the modulation method. For supporting multiple air-interfaces in a wireless mobile system, different kinds of OFDM based modulation methods should be supported in one modem chip. It requires a variable point IFFT/FFT or reconfigurable IFFT/FFT processor. In this paper, we propose the design method of a reconfigurable IFFT/FFT processor. In addition, it is shown that a reconfigurable IFFT/FFT processor can he implemented by using the proposed method.

Integration of SoC Test and Verification Using Embedded Processor and Reconfigurable Architecture (임베디드 프로세서와 재구성 가능한 구조를 이용한 SoC 테스트와 검증의 통합)

  • Kim Nam-Sub;Cho Won-Kyung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.7 s.349
    • /
    • pp.38-49
    • /
    • 2006
  • In this paper, a novel concept based on embedded processor and reconfigurable logic is proposed for efficient manufacturing test and design verification. Unlike traditional gap between design verification and manufacturing test, proposed concept is to combine both design verification and manufacturing test. The semiconductor chip which is using the proposed concept is named "SwToC" and SwToC stands for System with Test On a Chip. SwToC has two main features. First, it has functional verification function on a chip and this function could be made by using embedded processor, reconfigurable logic and memory. Second, it has internal ATE on a chip and this feature also could be made by the same architecture. To evaluate the proposed SwToC, we have implemented SwToC using commercial FPGA device with embedded processor. Experimental results showed that the proposed chip is possible for real application and could have faster verification time than traditional simulation method. Moreover, test could be done using low cost ATE.

Programmable Multimedia Platform for Video Processing of UHD TV (UHD TV 영상신호처리를 위한 프로그래머블 멀티미디어 플랫폼)

  • Kim, Jaehyun;Park, Goo-man
    • Journal of Broadcast Engineering
    • /
    • v.20 no.5
    • /
    • pp.774-777
    • /
    • 2015
  • This paper introduces the world's first programmable video-processing platform for the enhancement of the video quality of the 8K(7680x4320) UHD(Ultra High Definition) TV operating up to 60 frames per second. In order to support required computing capacity and memory bandwidth, the proposed platform implemented several key features such as symmetric multi-cluster architecture for parallel data processing, a ring-data path between the clusters for data pipelining and hardware accelerators for computing filter operations. The proposed platform based on RP(Reconfigurable Processor) processes video quality enhancement algorithms and handles effectively new UHD broadcasting standards and display panels.

Design of Reconfigurable Coprocessor for Multimedia Mobile Terminal (멀티미디어 무선 단말기를 위한 재구성 가능한 코프로세서의 설계)

  • Kim, Nam-Sub;Lee, Sang-Hun;Kum, Min-Ha;Kim, Jin-Sang;Cho, Won-Kyung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.4
    • /
    • pp.63-72
    • /
    • 2007
  • In this paper, we propose a novel reconfigurable coprocessor for multimedia mobile terminals. Because most of multimedia operations require fast operations of large amount of data in the limited clock frequency, it is necessary to enhance the performance of the embedded processor that is widely used in current multimedia mobile terminals. Therefore, we proposed and have designed the coprocessor which had the ability of fast operations of multimedia data. The proposed coprocessor was not only reconfigurable, but also flexible and expandable. The proposed coprocessor has been designed by using VHDL and compared with previous reconfigurable coprocessors and a commercial embedded processor in architecture and speed. As a result of the architectural comparison, the proposed coprocessor had better structure in terms of hardware size and flexibility. Also, the simulation results of DCT application showed that the proposed coprocessor was 26 times faster than a commercial ARM processor and 11 times faster than the ARM processor with fast DCT core.