우리나라의 금융ADR제도는 금융감독당국인 금융감독원 및 그 안에 설치되는 금융분쟁조정위원회가 제도운영의 주체가 되는 이른바 "금융분쟁조정제도"로 대표된다고 할 수 있고, 이를 흔히 "행정형 금융ADR제도"라고 평가하고 있다. 이 제도는 금융위원회설치법(1997)에 의해 1999년경에 도입되어 10여년에 걸친 제도운영의 성과를 축적하여 현재에 이르고 있다. 그런데 정작 우리나라에서 금융ADR제도가 주목받기 시작한 것은 대체로 2008년의 이른바 금융위기 이후에 금융소비자보호가 강조되기 시작하면서이다. 금융거래를 통하여 피해를 입은 금융소비자를 보호하기 위한 제도적 방안의 하나로 "소송외적 분쟁해결제도(이른바 ADR)"에 대한 관심이 높아졌기 때문이다. 그나마 우리나라 금융ADR제도에 관한 논의는 주로 감독체제 개편과 관련하여 금융ADR기관의 운영주체를 누구로 할 것인가에 집중되었다는 점에 특이성이 있고, 우리 금융ADR제도의 특징을 객관적인 입장에서 면밀하게 분석한 위에 제도개선의 방향성을 제시하는 논의는 충분하게 이루어졌다고 할 수 없다. 본고는 이와 같은 점들을 문제의식으로 하여 우리나라의 금융ADR제도의 특징을 분석하여 하나의 제도모델로 구체화하고, 이를 통하여 제도의 문제점을 분명히 하고 그 개선방향을 제시하고자 하였다. 우리나라 금융ADR제도는 "행정형 통합형 합의형+집행력 부여형(준사법형) IDR비전치형(ADR기관내 합의권고형)"의 특징을 갖는 제도모델로 평가할 수 있다. 그러나 준사법형 효력모델을 채택하면서도 제도의 실효성확보를 위한 제도적 기반을 갖추지 못하고 있고, 통합형 ADR기관의 제도운영의 부담이 크다는 두 가지 문제점을 극복하여야 하는 과제를 동시에 안고 있다. 그러한 관점에서 본고는 현행 제도의 실효성 확보와 업계자율형 ADR제도(특히 IDR전치형 제도)의 확충을 위한 개선방안을 제시하였다. 특히 제도의 실효성확보 방안으로서 조정안에 편면적 구속력을 부여하지 않고도 조정성립율을 높일 수 있는 방안이 제도개선으로서는 최선책이라는 전제 하에 내부의 인원확충을 도모하고 조정절차 및 효력을 차등화하는 방안, 금융기관이 조정절차 중에 소송으로 도피하는 문제점을 해결하기 위하여 피신청인인 금융기관은 합의권고 또는 조정안을 제시받기 전에는 소를 제기하지 못하도록 규제하는 방안, 소송과의 연계제도로서 소송절차의 중지제도 외에 시효중단효를 부여하는 방안을 각각 제시하였다.
현 정부의 주요 국책사업 중 하나인 도시재생 뉴딜사업은 매년 100 곳씩, 5년간 500곳을대상으로 50조를 투자하여 낙후된 지역을 개발하는 것으로 언론과 지자체의 높은 이목이 집중되고 있다. 그러나, 현재 이 사업모델은 면적 규모에 따라 "우리동네 살리기, 주거정비지원형, 일반근린형, 중심시가지형, 경제기반형" 등 다섯 가지로 나뉘어 추진되어 그 지역 본래의 특성을 반영하지 못하고 있다. 국내 도시재생 성공 키워드는 "주민 참여", "지역특화" "부처협업", "민관협력"이다. 성공 키워드에 따르면 지자체에서 정부에게 도시재생 사업을 제안할 때 지역주민, 민간기업의 도움과 함께 도시의 특성을 정확히 이해하고 도시의 특성에 어울리는 방향으로 사업을 추진하는 것이 가장 중요하다는 것을 알 수 있다. 또한 도시재생 사업 후 발생하는 부작용 중 하나인 젠트리피케이션 문제를 고려하면 그 지역 특성에 맞는 도시재생 유형을 선정하여 추진하는 것이 중요하다. 이에 본 연구는 '도시재생 뉴딜 사업' 방법론의 한계점을 보완하기 위해, 기존 서울시가 지역 특성에 기반하여 추진하고 있는 "2025 서울시 도시재생 전략계획"의 도시재생 유형을 참고하여 도시재생 사업지에 맞는 도시재생 유형을 추천하는 시스템을 머신러닝 알고리즘을 활용하여 제안하고자 한다. 서울시 도시재생 유형은 "저이용저개발, 쇠퇴낙후, 노후주거, 역사문화자원 특화" 네 가지로 분류된다 (Shon and Park, 2017). 지역 특성을 파악하기 위해 총 4가지 도시재생 유형에 대해 사업이 진행된 22개의 지역에 대한 뉴스 미디어 10만여건의 텍스트 데이터를 수집하였다. 수집된 텍스트를 이용하여 도시재생 유형에 따른 지역별 주요 키워드를 도출하고 토픽모델링을 수행하여 유형별 차이가 있는 지 탐색해 보았다. 다음 단계로 주어진 텍스트를 기반으로 도시재생 유형을 추천하는 추천시스템 구축을 위해 텍스트 데이터를 벡터로 변환하여 머신러닝 분류모델을 개발하였고, 이를 검증한 결과 97% 정확도를 보였다. 따라서 본 연구에서 제안하는 추천 시스템은 도시재생 사업을 진행하는 과정에서 신규 사업지의 지역 특성에 기반한 도시재생 유형을 추천할 수 있을 것으로 기대된다.
본 연구는 기업 브랜드 자산을 형성하는 주요개념인 브랜드 이미지와 관련하여 지각된 브랜드 이미지의 유형에 따라 브랜드 효과로서의 브랜드 선호도와 행동의도에 미치는 영향에 대하여 연구하였다. 지각된 브랜드 이미지는 기업 브랜드가 추구하는 이미지에서 실제로 소비자가 지각하는 브랜드 이미지 유형으로 설정하고, 브랜드 선호도와 함께 행동의도로는 구매의도와 추천의도로 각각 결과변인을 설정하였다. 분석결과, 지각된 브랜드 이미지 유형은 크게 2가지로 '요인1(도전)'과 '요인2(신뢰)'로 추출되었으며, 군집분석을 통해 3개의 각 유형 별 집단을 확인하였다. 각 집단 별로 다르게 지각된 브랜드 이미지 유형은 브랜드 선호도와 구매의도, 추천의도에 유의미한 차이를 나타내었다. 또한 지각된 브랜드 이미지 유형 별 차이는 '도전 형', '신뢰 형', '통합 형'의 순으로 높게 나타나는 것을 확인할 수 있었다. 본 연구는 현재까지 다소 광범위한 이론으로 분류되는 브랜드 이미지에 대한 개념을 실제 소비자 지각 차원으로 접근하여 실무사례에 적용한 연구로서 실증적 가치를 지니며, 무엇보다 광고를 통한 브랜드 이미지 관리의 실무적 시사점을 줄 수 있다는 점에서 의의가 있다.
구매자와의 관계지속을 위한 관계 확산형 비즈니스 모델의 가장 큰 특징은 한번이라도 물품을 구매한 고객은 SNS(Social Networking Service)의 팔로우(Follow) 기능을 이용하여 자동으로 단골고객으로 등록하여, 구매자와 생산자와의 관계가 일회성에 그치지 않고 향후에도 지속될 수 있게 하여 잠재고객이 되고, 장기적으로 재구매가 이루어지게 한다. 단골이 된 고객에게 생산자는 신상품 출하 시 객관적인 물품정보 외에 재배하는 동안의 농장 모습이나 농작물의 성장과정 등 생생한 근황과, 파종에서 수확까지의 숨겨진 이야기를 통해 자신이 농사지으며 전원생활을 하는듯한 감성을 자극한다. 또한, 생산자는 저장법이나 요리법 등의 다양한 사용법을 안내하며 새로운 물품을 추천하거나 홍보를 할 수 있다. 이러한 장점은 기존의 전자상거래에서 상품의 판매와 홍보가 분리되어 링크를 통해 외부로 연결되어야 하는 문제에서 벗어나 판매와 홍보가 하나의 계정 안에서 수행하도록 하여 사이트 접근성을 높여준다. 또한 구매자간에도 상품을 추천하고 소식을 확산하게 하여 구매자는 구매한 상품에 대한 구매경험을 공유하고, 추천, 구매후기 작성 및 기존 구매후기를 재배포하여 서로 알지 못하던 구매자 사이의 소통을 가능하게 한다는 것이다.
BACKGROUND: To determine effect of phosphate (P) application on Cadmium (Cd) extractability and its uptake by rice plant in Cd contaminated paddy soil, dipotassium ($K_2HPO_4$) which was the most effective of P materials to decrease Cd extractability in previous study was selected as P fertilizer. METHODS AND RESULTS: Dipotassium phosphate was applied at the rates of 0, 78, 234, and 390 kg $P_2O_5/ha$, and then rice was cultivated in submerged paddy soil from Jun. to Oct. in 2015. Cadmium concentrations in grain, straw, and root of rice plant decreased significantly with increasing application rate of $K_2HPO_4$. The trend of 1 M $NH_4OAc$ extractable Cd concentration in soil was similar to that of Cd uptake by rice plant. One M $NH_4OAc$ extractable Cd concentration was negatively related to soil pH and negative charge. Alleviation of Cd phytoavailability of rice in paddy soil might be attributed to increase in pH and negative charge of soil. Using a quadratic response model, amount of grain yield were related to $K_2HPO_4$ application rates as Grain yield = $5.38+2.39{\times}10^{-3}K_2HPO_4-6.65{\times}10^{-6}K_2HPO{_4}^2$ (model $R^2=0.968$). Using this equations, the greatest grain yield (5.6 Mg/ha) was at the rate of 180 kg $P_2O_5/ha$. At this application rate of P, the Cd concentration in grain was 0.53 mg/kg, implying ca. 23% lower than the control. CONCLUSION: From the view point of heavy metal safety and crop productivity, it might be good P management to apply P fertilizer with 4 times higher rate than recommendation (45 kg/ha).
온라인 사용자들이 소셜 미디어상에 올린 온라인 리뷰 속 숨겨진 감정을 분석하는 감성분석은 소셜미디어의 확산에 힘입어 많은 관심을 받고 있다. 본 연구는 기존 연구들과 차별화된 방법으로 감성분석을 시도하기 위하여 베이지안 네트워크에 기반한 감성 분석 모델을 제안한다. 모델에는 MBFS(Markov Blanket-based Feature Selection)가 속성 선택 기법으로 사용된다. MBFS의 성과를 실증적으로 증명하기 위하여 소셜미디어인 Yelp의 리뷰 데이터를 활용하였다. 벤치마킹 속성 선택 기법으로는 상관관계기반 속성 선택, 정보획득 속성 선택, 획득비율 속성 선택을 사용하였다. 한편, 해당 속성선택방법을 토대로 4개의 머신러닝 알고리즘을 이용하여 분류성과를 비교하였다. 나아가 MBFS로 선택된 속성들 간 인과관계를 확인하고자 베이지안 네트워크를 통해 What-if 분석을 실시하였다. 본 연구에서 택한 머신러닝 분류기는 베이지안 네트워크 기반의 TAN (Tree Augmented Naive Bayes), NB (Naive Bayes), S-Spouses(Sons & Spouses), A-markov (Augmented Markov Blanket)이다. 성과분석 결과 본 연구에서 제안한 MBFS 방법이 정확도, 정밀도, F1점수 측면에서 벤치마킹 방법보다 더 우수한 성과를 나타내었다.
본 연구는 디자인 영역 중 웹 스타일에 대해서 소비자 감성과 만족과의 관계를 연구했다. 기존 웹 스타일 연구들은 웹의 레이아웃과 구조도 등과 색상 등이 감성에 미치는 영향에서 연구했다. 본 연구는 기존 연구들과 차별되게 웹의 구성 요소를 배제하고 소비자의 감성 지표만을 갖고 소비자 만족과의 관계를 분석했다. 분석을 위해 검증을 위해 소비자 204명을 대상으로 40개 웹 스타일 테마를 선정, 각 소비자에게 4개씩 평가하도록 하였다. 소비자에게 평가하도록 한 감성 형용사는 18개의 대비되는 쌍을 갖는 감성 형용사로 구성하였고, 요인 분석을 통해 상위 감성 지표를 추출했다. 각 감성 지표들은 '부드러움', '모던함', '명확함', '꽉 참' 이었으며, 감성지표들이 소비자 만족에 미치는 영향이 다를 것으로 판단하여 가설을 수립했다. 분석 결과에 따라 가설 1과 2, 3은 채택되었으며, 가설 4의 경우는 기각되었다. 가설 4의 경우 기각되었지만 정의 방향이 아닌 부의 방향으로 유의한 것으로 나타났다. 이때, 조절 초점 성향이 감성이라는 정보처리 과정에서 소비자 만족에 미치는 영향이 다를 것으로 판단했다. 조절 초점 성향은 조직 행동 및 의사결정에 영향을 주기도 하며, 정치, 문화, 윤리적 판단 및 행동은 물론 광범위적 심리적 문제와 사고 프로세스, 감정적 반응에도 영향을 미친다. 때문에 각 감성 지표에 대한 조절 초점 간 차이를 확인할 필요성이 있고, 각 감성 지표에 대한 세부 가설을 수립했다. 세부 가설을 검증하기 위해 조절 회귀 분석을 수행했다. 분석 결과 가설 5는 부분적으로 지지됐고, 가설 5.3만 지지되었고, 5.4의 경우 기각되었지만 가설과의 반대 방향으로 지지되었다. '명확함'의 경우 향상 초점이 소비자 만족에 더 큰 영향을 보였고, 예방 초점일수록 '꽉 참'을 더 선호한 것으로 나타났다. 분석 결과를 바탕으로 조절 초점 성향을 향상, 예방, 중간 성향으로 3집단으로 구분, 소비자 감성 기반으로 웹 스타일에 대한 추천을 할 수 있는 알고리즘을 개발했다.
최근 딥러닝은 오디오, 텍스트 및 이미지 데이터와 같은 비 체계적인 데이터를 대상으로 다양한 추정, 분류 및 예측 문제에 사용 및 적용되고 있다. 특히, 의류산업에 적용될 경우 딥러닝 기법을 활용한 의류 인식, 의류 검색, 자동 제품 추천 등의 심층 학습을 기반으로 한 응용이 가능하다. 이 때의 핵심모형은 합성곱 신경망을 사용한 이미지 분류이다. 합성곱 신경망은 입력이 전달되고 출력에 도달하는 과정에서 가중치와 같은 매개 변수를 학습하는 뉴런으로 구성되고, 영상 분류에 가장 적합한 방법론으로 사용된다. 기존의 의류 이미지 분류 작업에서 대부분의 분류 모형은 의류 이미지 자체 또는 전문모델 착용 의류와 같이 통제된 상황에서 촬영되는 온라인 제품 이미지를 사용하여 학습을 수행한다. 하지만 본 연구에서는 통제되지 않은 상황에서 촬영되고 사람들의 움직임과 다양한 포즈가 포함된 스트릿 패션 이미지 또는 런웨이 이미지를 분류하려는 상황을 고려하여 분류 모형을 훈련시키는 효과적인 방법을 제안한다. 이동성을 포착하는 런웨이 의류 이미지로 모형을 학습시킴으로써 분류 모형의 다양한 쿼리 이미지에 대한 적응력을 높일 수 있다. 모형 학습 시 먼저 ImageNet 데이터셋을 사용하여 pre-training 과정을 거치고 본 연구를 위해 수집된 32 개 주요 패션 브랜드의 2426개 런웨이 이미지로 구성된 데이터셋을 사용하여 fine-tuning을 수행한다. 학습 과정의 일반화를 고려해 10번의 실험을 수행하고 제안된 모형은 최종 테스트에서 67.2 %의 정확도를 기록했다. 본 연구 모형은 쿼리 이미지가 런웨이 이미지, 제품 이미지 또는 스트릿 패션 이미지가 될 수 있는 다양한 분류 환경에 적용될 수 있다. 구체적으로는 패션 위크에서 모바일 어플리케이션 서비스를 통해 브랜드 검색을 용이하게 하는 서비스를 제공하거나, 패션 잡지사의 편집 작업에 사용되어 브랜드나 스타일을 분류하고 라벨을 붙일 수 있으며, 온라인 쇼핑몰에서 아이템 정보를 제공하거나 유사한 아이템을 추천하는 등의 다양한 목적에 적용될 수 있다.
인터넷 비즈니스의 활성화에 따라서 기업은 고객의 인물정보 및 거래정보를 활용하여 보다 맞춤화된 개인화 서비스를 제공하고 있다. 기존의 고객군별 예측기법은 유사한 고객들을 군집화하여 고객군별로 예측모델을 수립하는 것으로, 구매가 많고 충성도가 높은 핵심고객에게 요구되는 일대일 서비스를 제공하는 데는 한계가 있다. 반면 일대일 고객별 예측기법은 각 고객에게 고도로 맞춤화된 서비스를 제공하지만, 과거 구매이력이 많지 않은 고객 이나 신규 고객에게는 정확한 개인화 서비스를 제공하지 못한다. 본 연구는 고객의 구매빈도에 따라서 유사 고객들과의 군집화 수준을 동적으로 조정하는 새로운 지능형 개인화 시스템을 제안한다. 제안된 시스템은 과거 구매가 많은 고객들에 대해서는 일대일 예측모델을 수립하지만, 구매 빈도가 낮은 고객의 경우 다른 고객들과의 최적화된 군집화를 통해 예측모델을 수립한다. 본 기법을 Neilsen의 음료수 구매 데이터셋에 적용하여 고객의 일회 구매금액 및 구매품목을 예측한 결과, 기존 두 예측기법들에 비하여 적정한 계산비용(computational cost)으로 더욱 정확한 개안화 서비스를 제공할 수 있음을 확인하였다.
본 연구의 목적은 정규교육과정 내에서 초등학교 일반학급 수학 영재아를 위한 효율적인 영재교육 방안을 탐색해 보고, 영재의 특성을 고려한 심화학습 프로그램을 개발하여 실제로 일반학급의 교수 학습 환경에 적용한 후, 그 효과를 분석하는 것이다. 문헌연구를 통해 초등학교 일반학급 수학 영재아 지도를 위한 복식수업 형태의 영재교육 방안을 제시하였고, 수학영재 심화학습 프로그램을 개발하여 초등학교 1학년 한 학급 6명을 대상으로 적용하여 그 효과를 분석하였다. 연구의 결과 첫째, 일반학급에서 복식수업 형태로 수학 영재교육을 실시하는 것은 수학 영재아 측면에서 매우 효과적이었다. 둘째, 수학영재 심화학습 프로그램은 수학 영재아의 수학적 사고력과 창의성 계발에 매우 효과적이었다. 셋째, 수학 영재아 선발 과정에서 교사의 추천과 영재성 검사는 둘 다 매우 중요한 것으로 나타났다. 이 연구는 영재교육이 방과후 교육 형태의 특별교육으로만 운영될 것이 아니라 정규교육과정 내에서 보다 효율적인 방법으로 운영함으로써 수학 영재아의 요구에 부합되면서도 영재교육의 효과를 극대화할 수 있음을 제안하고 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.