• Title/Summary/Keyword: Recommendation Model

Search Result 697, Processing Time 0.023 seconds

Collaborative Filtering Recommendation Algorithm Based on LDA2Vec Topic Model (LDA2Vec 항목 모델을 기반으로 한 협업 필터링 권장 알고리즘)

  • Xin, Zhang;Lee, Scott Uk-Jin
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.07a
    • /
    • pp.385-386
    • /
    • 2020
  • In this paper, we propose a collaborative filtering recommendation algorithm based on the LDA2Vec topic model. By extracting and analyzing the article's content, calculate their semantic similarity then combine the traditional collaborative filtering algorithm to recommend. This approach may promote the system's recommend accuracy.

  • PDF

Hybrid Recommendation Based Brokerage Agent Service System under the Compound Logistics (공동물류 환경의 혼합추천시스템 기반 차주-화주 중개서비스 구현)

  • Jang, Sangyoung;Choi, Myoungjin;Yang, Jaekyung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.39 no.4
    • /
    • pp.60-66
    • /
    • 2016
  • Compound logistics is a service aimed to enhance logistics efficiency by supporting that shippers and consigners jointly use logistics facilities. Many of these services have taken place both domestically and internationally, but the joint logistics services for e-commerce have not been spread yet, since the number of the parcels that the consigners transact business is usually small. As one of meaningful ways to improve utilization of compound logistics, we propose a brokerage service for shipper and consigners based on the hybrid recommendation system using very well-known classification and clustering methods. The existing recommendation system has drawn a relatively low satisfaction as it brought about one-to-one matches between consignors and logistics vendors in that such matching constrains choice range of the users to one-to-one matching each other. However, the implemented hybrid recommendation system based brokerage agent service system can provide multiple choice options to mutual users with descending ranks, which is a result of the recommendation considering transaction preferences of the users. In addition, we applied feature selection methods in order to avoid inducing a meaningless large size recommendation model and reduce a simple model. Finally, we implemented the hybrid recommendation system based brokerage agent service system that shippers and consigners can join, which is the system having capability previously described functions such as feature selection and recommendation. As a result, it turns out that the proposed hybrid recommendation based brokerage service system showed the enhanced efficiency with respect to logistics management, compared to the existing one by reporting two round simulation results.

Improvement of a Product Recommendation Model using Customers' Search Patterns and Product Details

  • Lee, Yunju;Lee, Jaejun;Ahn, Hyunchul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.1
    • /
    • pp.265-274
    • /
    • 2021
  • In this paper, we propose a novel recommendation model based on Doc2vec using search keywords and product details. Until now, a lot of prior studies on recommender systems have proposed collaborative filtering (CF) as the main algorithm for recommendation, which uses only structured input data such as customers' purchase history or ratings. However, the use of unstructured data like online customer review in CF may lead to better recommendation. Under this background, we propose to use search keyword data and product detail information, which are seldom used in previous studies, for product recommendation. The proposed model makes recommendation by using CF which simultaneously considers ratings, search keywords and detailed information of the products purchased by customers. To extract quantitative patterns from these unstructured data, Doc2vec is applied. As a result of the experiment, the proposed model was found to outperform the conventional recommendation model. In addition, it was confirmed that search keywords and product details had a significant effect on recommendation. This study has academic significance in that it tries to apply the customers' online behavior information to the recommendation system and that it mitigates the cold start problem, which is one of the critical limitations of CF.

Social Network Based Music Recommendation System (소셜네트워크 기반 음악 추천시스템)

  • Park, Taesoo;Jeong, Ok-Ran
    • Journal of Internet Computing and Services
    • /
    • v.16 no.6
    • /
    • pp.133-141
    • /
    • 2015
  • Mass multimedia contents are shared through various social media servies including social network service. As social network reveals user's current situation and interest, highly satisfactory personalized recommendation can be made when such features are applied to the recommendation system. In addition, classifying the music by emotion and using analyzed information about user's recent emotion or current situation by analyzing user's social network, it will be useful upon recommending music to the user. In this paper, we propose a music recommendation method that makes an emotion model to classify the music, classifies the music according to the emotion model, and extracts user's current emotional state represented on the social network to recommend music, and evaluates the validity of our method through experiments.

Recommendations Based on Listwise Learning-to-Rank by Incorporating Social Information

  • Fang, Chen;Zhang, Hengwei;Zhang, Ming;Wang, Jindong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.1
    • /
    • pp.109-134
    • /
    • 2018
  • Collaborative Filtering (CF) is widely used in recommendation field, which can be divided into rating-based CF and learning-to-rank based CF. Although many methods have been proposed based on these two kinds of CF, there still be room for improvement. Firstly, the data sparsity problem still remains a big challenge for CF algorithms. Secondly, the malicious rating given by some illegal users may affect the recommendation accuracy. Existing CF algorithms seldom took both of the two observations into consideration. In this paper, we propose a recommendation method based on listwise learning-to-rank by incorporating users' social information. By taking both ratings and order of items into consideration, the Plackett-Luce model is presented to find more accurate similar users. In order to alleviate the data sparsity problem, the improved matrix factorization model by integrating the influence of similar users is proposed to predict the rating. On the basis of exploring the trust relationship between users according to their social information, a listwise learning-to-rank algorithm is proposed to learn an optimal ranking model, which can output the recommendation list more consistent with the user preference. Comprehensive experiments conducted on two public real-world datasets show that our approach not only achieves high recommendation accuracy in relatively short runtime, but also is able to reduce the impact of malicious ratings.

Development of a Targeted Recommendation Model for Earthquake Risk Prevention in the Whole Disaster Chain

  • Su, Xiaohui;Ming, Keyu;Zhang, Xiaodong;Liu, Junming;Lei, Da
    • Journal of Information Processing Systems
    • /
    • v.17 no.1
    • /
    • pp.14-27
    • /
    • 2021
  • Strong earthquakes have caused substantial losses in recent years, and earthquake risk prevention has aroused a significant amount of attention. Earthquake risk prevention products can help improve the self and mutual-rescue abilities of people, and can create convenient conditions for earthquake relief and reconstruction work. At present, it is difficult for earthquake risk prevention information systems to meet the information requirements of multiple scenarios, as they are highly specialized. Aiming at mitigating this shortcoming, this study investigates and analyzes four user roles (government users, public users, social force users, insurance market users), and summarizes their requirements for earthquake risk prevention products in the whole disaster chain, which comprises three scenarios (pre-quake preparedness, in-quake warning, and post-quake relief). A targeted recommendation rule base is then constructed based on the case analysis method. Considering the user's location, the earthquake magnitude, and the time that has passed since the earthquake occurred, a targeted recommendation model is built. Finally, an Android APP is implemented to realize the developed model. The APP can recommend multi-form earthquake risk prevention products to users according to their requirements under the three scenarios. Taking the 2019 Lushan earthquake as an example, the APP exhibits that the model can transfer real-time information to everyone to reduce the damage caused by an earthquake.

Contents Recommendation Scheme Applying Non-preference Separately (비선호 분리 적용 콘텐츠 추천 방안)

  • Yoon Joo-young;Lee Kil-hung
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.19 no.3
    • /
    • pp.221-232
    • /
    • 2023
  • In this paper, we propose a recommendation system based on the latent factor model using matrix factorization, which is one of the most commonly used collaborative filtering algorithms for recommendation systems. In particular, by introducing the concept of creating a list of recommended content and a list of non-preferred recommended content, and removing the non-preferred recommended content from the list of recommended content, we propose a method to ultimately increase the satisfaction. The experiment confirmed that using a separate list of non-preferred content to find non-preferred content increased precision by 135%, accuracy by 149%, and F1 score by 72% compared to using the existing recommendation list. In addition, assuming that users do not view non-preferred content through the proposed algorithm, the average evaluation score of a specific user used in the experiment increased by about 35%, from 2.55 to 3.44, thereby increasing user satisfaction. It has been confirmed that this algorithm is more effective than the algorithms used in existing recommendation systems.

Investigating the Recommendation Intention of Customers on the Mobile App and KIOSK: Focused on the Mediating Effect of Untact Service Image (모바일 앱 및 키오스크 사용자의 추천의도에 관한 연구 ; 비대면서비스 이미지의 매개효과를 중심으로)

  • Park Jongsoon;Kim Chang-Sik
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.19 no.2
    • /
    • pp.177-186
    • /
    • 2023
  • This study investigates customers' perceptions of untack services in the hospitality and foodservice industries based on the Technology Acceptance Model (TAM). The study first identifies Perceived Ease of Use, Perceived Usefulness, and Image as antecedents of customers' Behavioral Intention and Recommendation Intention. Second, the structural relationships among them are established and tested. The study adopts a self-administered survey method, uses SmartPLS 4.0, and applies a two-stage approach. After testing the reliability and validity of customers' 429 data on hospitality and foodservice, hypotheses were tested. The results showed that Perceived Ease of Use significantly affects Perceived Usefulness and Image. Perceived Usefulness significantly also affects Image and Behavioral Intention. The Image of untact services also significantly affects Behavioral Intention and Recommendation Intention. And Behavioral Intention significantly affects Recommendation Intention. Finally, the mediation effects are also all significant. The study's findings suggest that researchers and practitioners should consider the management of Image and Recommendation Intention in the untact service environment.

The Effect of Consumer Evaluations of Size Recommendation Services Based on Body Information on Consumer Responses and the Moderating Effect of the Level of Information Search (신체정보 기반 사이즈 추천서비스에 대한 소비자 평가가 소비자 반응에 미치는 영향과 정보탐색정도의 조절효과)

  • Sangwoo Seo
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.48 no.3
    • /
    • pp.485-500
    • /
    • 2024
  • This study was conducted to examine the effects of consumer evaluations on size recommendation services based on body information on consumer responses and the moderating effect of the level of information search. To analyze the research model, a total of 200 data were collected from August 18 to 24, 2022, targeting consumers who had experience with using size recommendation services based on body information. As a result of the research model analysis, it was confirmed that the compatibility, reliability, and convenience of the size recommendation services based on body information influenced attitude, which, in turn, influenced usage intention. In addition, In the case of the group subject to a low level of information search, the path through which compatibility and reliability influenced attitude was significant, but that of convenience was not. In the group featuring a high level of information search, the path through which reliability and convenience influenced attitude was significant, but that of compatibility was not. This study is meaningful in that it expanded research related to size recommendation services to the field of consumer behavior.

Collaborative filtering by graph convolution network in location-based recommendation system

  • Tin T. Tran;Vaclav Snasel;Thuan Q. Nguyen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.7
    • /
    • pp.1868-1887
    • /
    • 2024
  • Recommendation systems research is a subfield of information retrieval, as these systems recommend appropriate items to users during their visits. Appropriate recommendation results will help users save time searching while increasing productivity at work, travel, or shopping. The problem becomes more difficult when the items are geographical locations on the ground, as they are associated with a wealth of contextual information, such as geographical location, opening time, and sequence of related locations. Furthermore, on social networking platforms that allow users to check in or express interest when visiting a specific location, their friends receive this signal by spreading the word on that online social network. Consideration should be given to relationship data extracted from online social networking platforms, as well as their impact on the geolocation recommendation process. In this study, we compare the similarity of geographic locations based on their distance on the ground and their correlation with users who have checked in at those locations. When calculating feature embeddings for users and locations, social relationships are also considered as attention signals. The similarity value between location and correlation between users will be exploited in the overall architecture of the recommendation model, which will employ graph convolution networks to generate recommendations with high precision and recall. The proposed model is implemented and executed on popular datasets, then compared to baseline models to assess its overall effectiveness.