• Title/Summary/Keyword: Recombination rate

Search Result 166, Processing Time 0.024 seconds

Surface Catalytic Recombination in Hypersonic Flow: A Review of the Numerical Methods (극초음속 유동에서의 표면 촉매 재결합: 수치해석적 기법 리뷰)

  • Ikhyun Kim;Yosheph Yang
    • Journal of Industrial Technology
    • /
    • v.43 no.1
    • /
    • pp.33-41
    • /
    • 2023
  • This paper provides a general overview of surface catalytic recombination in hypersonic flow. The surface catalytic recombination phenomena is elaborated in terms of its general overview and numerical modeling associated with it. The general overview of the surface catalytic recombination phenomena describes the elementary surface reactions for the surface catalytic and the role of the surface catalytic recombination efficiency in the heat transfer determination. In the numerical modeling, the surface catalytic recombination is described based on the stagnation-point boundary layer analysis, and finite-rate surface reaction modeling. Throughout this overview manuscript, a general understanding of this phenomena is obtained and can be used as foundation for deeper application with the numerical computational fluid dynamics (CFD) flow solver to estimate the surface heat transfer in the hypersonic vehicles.

Observation of Methyl Radical Recombination Following Photodissociation of CH3I at 266 nm by Time-Resolved Photothermal Spectroscopy

  • Suh, Myung-Koo;Sung, Woo-Kyung;Li, Guo-Sheng;Heo, Seong-Ung;Hwang, Hyun-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.3
    • /
    • pp.318-324
    • /
    • 2003
  • A time-resolved probe beam deflection (PBD) technique was employed to study the energy relaxation dynamics of photofragments produced by photodissociation of $CH_3I$ at 266 nm. Under 500 torr argon environment, experimental PBD transients revealed two energy relaxation processes; a fast relaxation process occurring within an acoustic transit time (less than 0.2 ㎲ in this study) and a slow relaxation process with the relaxation time in several tens of ㎲. The fast energy relaxation of which signal intensity depended linearly on the excitation laser power was assigned to translational-to-translational energy transfer from the photofragments to the medium. As for the slow process, the signal intensity depended on square of the excitation laser power, and the relaxation time decreased as the photofragment concentration increased. Based on experimental findings and reaction rate constants reported previously, the slow process was assigned to methyl radical recombination reaction. In order to determine the rate constant for methyl radical recombination reaction, a theoretical equation of the PBD transient for a radical recombination reaction was derived and used to fit the experimental results. By comparing the experimental PBD curves with the calculated ones, the rate constant for methyl recombination is determined to be $3.3({\pm}1.0)\;{\times}\;10^6\;s^{-1}torr^{-1}$ at 295 ± 2 K in 500 torr Ar.

Noise Robust Speaker Verification Using Subband-Based Reliable Feature Selection (신뢰성 높은 서브밴드 특징벡터 선택을 이용한 잡음에 강인한 화자검증)

  • Kim, Sung-Tak;Ji, Mi-Kyong;Kim, Hoi-Rin
    • MALSORI
    • /
    • no.63
    • /
    • pp.125-137
    • /
    • 2007
  • Recently, many techniques have been proposed to improve the noise robustness for speaker verification. In this paper, we consider the feature recombination technique in multi-band approach. In the conventional feature recombination for speaker verification, to compute the likelihoods of speaker models or universal background model, whole feature components are used. This computation method is not effective in a view point of multi-band approach. To deal with non-effectiveness of the conventional feature recombination technique, we introduce a subband likelihood computation, and propose a modified feature recombination using subband likelihoods. In decision step of speaker verification system in noise environments, a few very low likelihood scores of a speaker model or universal background model cause speaker verification system to make wrong decision. To overcome this problem, a reliable feature selection method is proposed. The low likelihood scores of unreliable feature are substituted by likelihood scores of the adaptive noise model. In here, this adaptive noise model is estimated by maximum a posteriori adaptation technique using noise features directly obtained from noisy test speech. The proposed method using subband-based reliable feature selection obtains better performance than conventional feature recombination system. The error reduction rate is more than 31 % compared with the feature recombination-based speaker verification system.

  • PDF

Evaluation of hydrogen recombination characteristics of a PAR using SPARC PAR experimental results

  • Jongtae Kim;Jaehoon Jung
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4382-4394
    • /
    • 2023
  • Passive auto-catalytic recombiners (PARs) are widely used to mitigate a hydrogen hazard. The first step to evaluate the hydrogen safety by PARs is to obtain qualified test data of the PARs for validation of their analytical model. SPARC PAR tests SP8 and SP9 were conducted to evaluate the hydrogen recombination characteristics of a honeycomb-shaped catalyst PAR. To obtain the hydrogen recombination rate from the PAR test data, two methods, Method-1 and Method-2, introduced by the THAI project, were applied. Since a large gradient of hydrogen concentration developed during hydrogen injection can cause a large error in the hydrogen mass obtained by integrating the measured hydrogen concentrations, a gate was installed at the PAR inlet to homogenize hydrogen in the test vessel before the PAR operation in the tests. A computational fluid dynamics (CFD) code with a PAR model was also applied to evaluate the characteristics of the PAR recombination according to the PAR inlet conditions, and the results were compared with those from Method-1 and Method-2. It was confirmed that the recombination rates from Method-1 require a correction factor to be compatible with results from Method-2 and the CFD simulation in the case of the SPARC-PAR tests.

Mapping Quantitative Trait Loci with Various Types of Progeny from Complex Pedigrees

  • Lee, C.;Wu, X.L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.11
    • /
    • pp.1505-1510
    • /
    • 2001
  • A method for mapping quantitative trait loci (QTL) was introduced incorporating the information of mixed progeny from complex pedigrees. The method consisted of two steps based on single marker analysis. The first step was to examine the marker-trait association with a mixed model considering common environmental effect and reversed QTL-marker linkage phase. The second step was to estimate QTL effects by a weighted least square analysis. A simulation study indicated that the method incorporating mixed progeny from multiple generations improved the accuracy of QTL detection. The influence of within-genotype variance and recombination rate on QTL analysis was further examined. Detecting a QTL with a large within-genotype variance was more difficult than with a small within-genotype variance. Most of the significant marker-QTL association was detectable when the recombination rate was less than 15%.

A numerical analysis on the extinction of hydrogen-oxygen diffusion flames at high pressure (고압하에서 수소-산소 확산화염의 소염 특성에 관한 수치 해석)

  • Son, Chae-Hun;Kim, Jong-Su;Jeong, Seok-Ho;Lee, Su-Ryong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.9
    • /
    • pp.1174-1184
    • /
    • 1997
  • Extinction characteristics of pure hydrogen-oxygen diffusion flames, at high pressures in the neighborhood of the critical pressure of oxygen, is numerically studied by employing counterflow diffusion flame as a model flame let in turbulent flames in rocket engines. The numerical results show that extinction strain rate increases almost linearly with pressure up to 100 atm, which can be explained by comparison of the chain-branching-reaction rate with the recombination-reaction rate. Since contributions of the chain-branching reactions, two-body reactions, are found to be much greater than those of the recombination reactions, three-body reactions, extinction is controlled by two-body reactions, thereby resulting in the linearity of extinction strain rate to pressure. Therefore, it is found that the chemical kinetic behaviors don't change up to 100 atm. Consideration of the pressure fall-off reactions shows a slight increase in extinction strain rate, but does not modify its linearity to pressure. The reduced kinetic mechanisms, which were verified at low pressures, are found to be still valid at high pressures and show good qualitative agreement in prediction of extinction strain rates. Effect of real gas is negligible on chemical kinetic behaviors of the flames.

Noise Robust Speaker Identification using Reliable Sub-Band Selection in Multi-Band Approach (신뢰성 높은 서브밴드 선택을 이용한 잡음에 강인한 화자식별)

  • Kim, Sung-Tak;Ji, Mi-Gyeong;Kim, Hoi-Rin
    • Proceedings of the KSPS conference
    • /
    • 2007.05a
    • /
    • pp.127-130
    • /
    • 2007
  • The conventional feature recombination technique is very effective in the band-limited noise condition, but in broad-band noise condition, the conventional feature recombination technique does not produce notable performance improvement compared with the full-band system. To cope with this drawback, we introduce a new technique of sub-band likelihood computation in the feature recombination, and propose a new feature recombination method by using this sub-band likelihood computation. Furthermore, the reliable sub-band selection based on the signal-to-noise ratio is used to improve the performance of this proposed feature recombination. Experimental results shows that the average error reduction rate in various noise condition is more than 27% compared with the conventional full-band speaker identification system.

  • PDF

High-Dose-Rate Electron-Beam Dosimetry Using an Advanced Markus Chamber with Improved Ion-Recombination Corrections

  • Jeong, Dong Hyeok;Lee, Manwoo;Lim, Heuijin;Kang, Sang Koo;Jang, Kyoung Won
    • Progress in Medical Physics
    • /
    • v.31 no.4
    • /
    • pp.145-152
    • /
    • 2020
  • Purpose: In ionization-chamber dosimetry for high-dose-rate electron beams-above 20 mGy/pulse-the ion-recombination correction methods recommended by the International Atomic Energy Agency (IAEA) and the American Association of Physicists in Medicine (AAPM) are not appropriate, because they overestimate the correction factor. In this study, we suggest a practical ion-recombination correction method, based on Boag's improved model, and apply it to reference dosimetry for electron beams of about 100 mGy/pulse generated from an electron linear accelerator (LINAC). Methods: This study employed a theoretical model of the ion-collection efficiency developed by Boag and physical parameters used by Laitano et al. We recalculated the ion-recombination correction factors using two-voltage analysis and obtained an empirical fitting formula to represent the results. Next, we compared the calculated correction factors with published results for the same calculation conditions. Additionally, we performed dosimetry for electron beams from a 6 MeV electron LINAC using an Advanced Markus® ionization chamber to determine the reference dose in water at the source-to-surface distance (SSD)=100 cm, using the correction factors obtained in this study. Results: The values of the correction factors obtained in this work are in good agreement with the published data. The measured dose-per-pulse for electron beams at the depth of maximum dose for SSD=100 cm was 115 mGy/pulse, with a standard uncertainty of 2.4%. In contrast, the ks values determined using the IAEA and AAPM methods are, respectively, 8.9% and 8.2% higher than our results. Conclusions: The new method based on Boag's improved model provides a practical method of determining the ion-recombination correction factors for high dose-per-pulse radiation beams up to about 120 mGy/pulse. This method can be applied to electron beams with even higher dose-per-pulse, subject to independent verification.

A Two-dimensional Numerical Analysis of Semiconductor Laser Diodes) (반도체 레이저 디이오드의 2차원 수치해석)

  • 김형래;곽계달
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.11
    • /
    • pp.17-28
    • /
    • 1995
  • In this paper, we developed a two-dimensional numerical simulator which could analyze the stripe geometry semiconductor laser diodes by modifying the commercial semiconductor device simulator, MEDICI. In order to study the characteristics of semiconductor laser diodes, it is necessary to solve the Helmholtz wave equation and photon rate equation in addition to the basic semiconductor equations. Also the recombination rates due to the spontaneous and the stimulated emissions should be included, which are very important recombination mechanisms in semiconductor laser diodes. Therefore, we included the solution routines which analyzed the Helmholtz wave equation and the photon rate equation and two important recombination rates to simulate the semiconductor laser diodes. Then we simulated the gain-guiding and index-guiding DH(Double Heterostructure) semiconductor laser diodes to verify the validity of the implemented functions. The results obtained from simulation are well consistent with the previously published ones. This allows us to know the operating characteristics of DH laser diodes and is expected to use as a tool for optimum design.

  • PDF

Dissociative Recombination Rates of O₂+ Ion with Low Energy Electrons

  • 성정희;선호성
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.11
    • /
    • pp.1065-1073
    • /
    • 1996
  • The dissociative recombination of O2+(v+)+e-→O(1S)+O(1D) has been theoretically investigated using the multichannel quantum defect theory (MQDT). Cross sections and rate coefficients at various electron energies are calculated. The resonant structures in cross section profile, which are hardly measurable in experiments, are also determined and the existence of Rydberg states is found to affect the rates. The theoretical rate coefficients are computed to be smaller than experimental ones. The reasons for this difference are explained. The two-step MQDT procedure is found to be very useful and promising in calculating the state-to-state rates of the dissociative recombination reaction which is a very important and frequently found phenomenon in Earth's ionosphere.