DOI QR코드

DOI QR Code

Evaluation of hydrogen recombination characteristics of a PAR using SPARC PAR experimental results

  • Jongtae Kim (Intelligent Accident Mitigation Research Division, Korea Atomic Research Institute) ;
  • Jaehoon Jung (Intelligent Accident Mitigation Research Division, Korea Atomic Research Institute)
  • Received : 2023.05.10
  • Accepted : 2023.08.08
  • Published : 2023.12.25

Abstract

Passive auto-catalytic recombiners (PARs) are widely used to mitigate a hydrogen hazard. The first step to evaluate the hydrogen safety by PARs is to obtain qualified test data of the PARs for validation of their analytical model. SPARC PAR tests SP8 and SP9 were conducted to evaluate the hydrogen recombination characteristics of a honeycomb-shaped catalyst PAR. To obtain the hydrogen recombination rate from the PAR test data, two methods, Method-1 and Method-2, introduced by the THAI project, were applied. Since a large gradient of hydrogen concentration developed during hydrogen injection can cause a large error in the hydrogen mass obtained by integrating the measured hydrogen concentrations, a gate was installed at the PAR inlet to homogenize hydrogen in the test vessel before the PAR operation in the tests. A computational fluid dynamics (CFD) code with a PAR model was also applied to evaluate the characteristics of the PAR recombination according to the PAR inlet conditions, and the results were compared with those from Method-1 and Method-2. It was confirmed that the recombination rates from Method-1 require a correction factor to be compatible with results from Method-2 and the CFD simulation in the case of the SPARC-PAR tests.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (Ministry of Science and ICT) (No. 2017M2A8A4015277, RS202200144236).

References

  1. Reviwe, Hydrogen Tank Explosion in Gangneung, South Korea, https://www.aiche.org/chs/conferences/international-center-hydrogen-safety-conference/2019/proceeding/paper/review-hydrogen-tank-explosion-gangneung-south-korea.
  2. T. Tsuruda, Nuclear power plant explosions at Fukushima-Daiichi, Procedia Eng. 62 (2013) 71-77, https://doi.org/10.1016/j.proeng.2013.08.045.
  3. https://h2tools.org/bestpractices/explosion-prevention.
  4. S.-W. Hong, J. Kim J, H.-S. Kang, Y.-S. Na, J. Song, Research efforts for the resolution of hydrogen risk, Nucl. Eng. Technol. 47 (1) (2015) 33e46, https://doi.org/10.1016/j.net.2014.12.003.
  5. H. Dimmelmeier, J. Eyink, M.-A. Movahed, Computational validation of the EPR combustible gas control system, Nucl. Eng. Des. 249 (2012) 118-124, https://doi.org/10.1016/j.nucengdes.2011.08.053.
  6. W.A. Dewit, G.W. Koroll, L. Sitar, Hydrogen Recombiner Development at AECL, Proceedings of the OECD/NEA/CSNI Workshop on the Implementation of Hydrogen Mitigation Techniques, Winnipeg, MB, 1996. Canada, 13-15 May.
  7. AREVA Passive Autocatalytic Recombiner, 2020. Available online: https://us.areva.com/home/liblocal/docs/Solutions/literature/G-008-V1PB-2011-ENG_PAR_reader.pdf (2021. April 3.
  8. E. Bachellerie, F. Arnould, M. Auglaire, B. De Boeck, O. Braillard, B. Eckardt, F. Ferroni, R. Moffett, Generic approach for designing and implementing a passive autocatalytic recombiner PAR-system in nuclear power plant containments, Nucl. Eng. Des. 221 (2003) 151-165, https://doi.org/10.1016/S0029-5493(02)00330-8.
  9. J.W. Park, B.R. Koh, K.Y. Suh, Demonstrative testing of honeycomb passive autocatalytic recombiner for nuclear power plant, Nucl. Eng. Des. 241 (2011) 4280-4288, https://doi.org/10.1016/j.nucengdes.2011.07.040.
  10. M. Stephane, M. Namane, O. Mehdi, CFD recombiner modeling and validation on the H2-par and Kali-H2 experiments, Science and Technology of Nuclear Installations 2011 (2011) 1-13, https://doi.org/10.1155/2011/574514.
  11. J. Kim, S. Hong, K.-H. Park, J.-H. Kim, J.-Y. Oh, Experimental study on hydrogen recombination characteristics of a passive autocatalytic recombiner during spray operation, Hydro 3 (2022) 197-217, https://doi.org/10.3390/hydrogen3020013.
  12. T. Kanzleiter, S. Gupta, K. Fischer, G. Ahrens, G. Langer, A. Kuhnel, G. Poss, G. Langrock, F. Funke, Hydrogen and Fission Product Issues Relevant for Containment Safety Assessment under Severe Accident Conditions, Reactor Safety Research Project 1501326 OECD-NEA THAI Project, 2010.
  13. B. Simon, E.-A. Reinecke, M. Klauck, D. Heidelberg, H.-J. Allelein, Investigation of PAR behavior in the REKO-4 test facility, July 30 August 3rd, in: Proc. 20th Int. Conf. Nuclear Engineering ICONE-20, 2012 (Anaheim, CA, USA).
  14. L.B. Gardner, B. Ibeh, J. Murphy, J. Allain, S. Yeung, C. Chenard, Hydrogen recombination scaling experiments at CNL's hydrogen safety test facility, Nucl. Eng. Des. 377 (2021), 111152, https://doi.org/10.1016/j.nucengdes.2021.111152.
  15. S. Gupta, G. Poss, M. Freitag, E. Schmidt, M. Colombet, B. von Laufenberg, A. Kuhnel, G. Langer, F. Funke, G. Langrock, G. Weber, M. Sonnenkalb, Aerosol and Iodine Issues and Hydrogen Mitigation under Accidental Conditions in Water Cooled Reactors OECD-NEA Thai-2 Project Final Report, 2015.
  16. E. Schmidt, M. Freitag, Passive Autocatalytic Recombiner Operation under Counter-current Flow Conditions (Test Series HR-46 - HR-50) OECD-NEA Thai-3 Project Quick Look Report, 2016.
  17. P. Royl, H. Rochholz, Wolfgang Breitung, John R. Travis, G. Necker, Analysis of steam and hydrogen distributions with PAR mitigation in NPP containments, Nucl. Eng. Des. 202 (Issue2/3) (2000) 231-248, https://doi.org/10.1016/S0029-5493(00)00332-0.
  18. X.G. Huang, Y.H. Yang, S.X. Zhang, Analysis of hydrogen risk mitigation with passive autocatalytic recombiner system in CPR1000 NPP during a hypothetical station blackout, Ann. Nucl. Energy 38 (2011) 2762-2769, https://doi.org/10.1016/j.anucene.2011.08.022.
  19. S. Kelm, M. Kampili, X. Liu, A. George, D. Schumacher, C. Druska, S. Struth, A. Kuhr, L. Ramacher, H.-J. Allelein, K.A. Prakash, G.V. Kumar, L.M.F. Cammiade, R. Ji, The tailored CFD package 'containmentFOAM' for analysis of containment atmosphere mixing, H2/CO Mitigation and Aerosol Transport, Fluids 6 (2021) 100, https://doi.org/10.3390/fluids6030100.
  20. E.-A. Reinecke, S. Kelm, P.-M. Steffen, M. Klauck, H.-J. Allelein, Validation and application of the REKO-DIREKT code for the simulation of passive auto-catalytic recombiners (PARs) operational behavior, Nucl. Technol. 196 (2016) 355-366, https://doi.org/10.13182/NT16-7.
  21. J. Kim, H.T. Kim, D. Kim, Validation and Application of a Code for 3-D Analysis of Hydrogen Behavior during Severe Accidents, Transactions of the Korean Nuclear Society Spring Meeting Jeju, Korea, May .
  22. J. Kim, Y.S. Na, S.-W. Hong, G.H. Kim, Wall Heat Transfer Modeling for Simulation of a Transient Thermal Hydraulics, 12th OpenFOAM Workshop, Univ. of Exeter, UK, 2017, pp. 24-27. https://openfoam-extend.sourceforge.net/OpenFOAM_Workshops/OFW12_2017Exeter/index.php/Presentations_static/Presentation_12.html.
  23. Introduction of KNT PAR, 2020. http://knt.re.kr.
  24. J. Kim, Thermal hydraulic modelling of grating effect for application to 3-dimensional analysis of hydrogen behavior in NPP containment, Nucl. Eng. Des. 380 (2021), 111291, https://doi.org/10.1016/j.nucengdes.2021.111291.