• Title/Summary/Keyword: Recombinant DNA

Search Result 842, Processing Time 0.022 seconds

Apoptotic Pathway Induced by Dominant Negative ATM Gene in CT-26 Colon Cancer Cells (CT-26 대장암 세포에서 Dominant Negative ATM 유전자에 의하여 유도되는 세포자멸사의 경로)

  • Lee, Jung Chang;Yi, Ho Keun;Kim, Sun Young;Lee, Dae Yeol;Hwang, Pyoung Han;Park, Jin Woo
    • Clinical and Experimental Pediatrics
    • /
    • v.46 no.7
    • /
    • pp.679-686
    • /
    • 2003
  • Purpose : Ataxia telangiectasia mutated(ATM) is involved in DNA damage responses at different cell cycle checkpoints, and signalling pathways associated with regulation of apoptosis in response to ionizing radiation(IR). However, the signaling pathway that underlies IR-induced apoptosis in ATM cells has remained unknown. The purpose of this study was, therefore, to investigate the apoptotic pathway that underlies IR-induced apoptosis in a CT-26 cells expressing dominant negative ATM (DN-ATM). Methods : We generated a replication-deficient recombinant adenovirus encoding the DN-ATM(Ad/DN-ATM) or control adenovirus encoding no transgene(Ad/GFP) and infected adenovirus to CT-26 cells. After infection, we examined apoptosis and apoptotic pathway by [$^3H$]-thymidine assay, DNA fragmentation, and Western immunoblot analysis. Results : DN-ATM gene served as the creation of AT phenotype in a CT-26 cells as revealed by decreased cell proliferations following IR. In addition, IR-induced apoptosis was regulated through the reduced levels of the anti-apoptotic protein Bcl-2, the increased levels of the apoptotic protein Bax, and the activation of caspase-9, caspase-3, and PARP. Conclusion : These results indicate that the pathway of IR-induced apoptosis in CT-26 cells expressing DN-ATM is mediated by mitochondrial signaling pathway involving the activation of caspase 9, caspase 3, and PARP.

Molecular Cloning and Expression of $\beta$-Xylosidase Gene from Thermophilic Alkalophilic Bacillus sp. K-17 into Escheyichia cozi and Bacillus subtilis (고온, 호알칼리성 Bacillus속 K-17 균주의 $\beta$-Xylosidase유전자의 Escherichia coli 및 Bacillus subtilis의 클로닝 및 발현)

  • Sung, Nack-Kie;Chun, Hyo-Kon;Chung, Duck-Hwa;Shim, Ki-Hwan;Kang, In-Soo
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.5
    • /
    • pp.436-439
    • /
    • 1989
  • The chromosomal DNA fragments of thermophilic alkalophilic Bacillus sp, K-17, a potent xylanhydrolyzing bacterium, were ligated to a vector plasmid pBR322 and transformed into Escherichia coli HB101. The plasmid pAX278, isolated from a transformant forming yellow color on the LB agar plate containing 1 mM p-nitrophenyl- $\beta$-xylopyranoside, was found to enable the transformants to produce p-xylosidase. The 5.0 kilobase insert of pAX278 had single sites for EcoRI, PstI, XbaI, and PvuII, and 2 sites for BglII. Biotinylated pAX218 was hybridized to 0.9 kb as well as 5.0 kb fragment from Bacillus sp. K-17 DNA on nitrocellulose filter. pGX718 was constructed by inserting the 5.0 kb HindIII fragment of pGX278 at the HindIII site of pGR71, E. coli and B. subtilis shuttle vector. The enzymatic properties of $\beta$-xylosidase from E. coli HB101 carrying recombinant plasmid were the same those of $\beta$-xylosidase from Bacillus sp. K-17.

  • PDF

Molecular Cloning and Analysis of Nucleotide Sequence of Xylanase Gene (xynk) from Bacillus pumilus TX703 (Bacillus pumilus TX703 유래 Xylanase 유전자(xynK)의 Cloning과 염기서열 분석)

  • 박영서
    • Journal of Life Science
    • /
    • v.12 no.2
    • /
    • pp.188-199
    • /
    • 2002
  • A gene coding for xylanase from thermo-tolerant Bacillus pumilus TX703 was cloned into Escherichia coli DH5 $\alpha$ using pUC19. Among 7,400 transformants, four transformants showed clear zones on the detection agar plates containing oat-spells xylan. One of them which showed highest xylanase activity was selected and its recombinant plasmid, named pXES106, was found to carry 2.24 kb insert DNA fragment. When the nucleotide sequence of the cloned xylanase gene (xynK) was determined, xynK gene was found to consist of 1,227 base-pair open reading frame coding for a polypeptide of 409 amino acids with a deduced molecular weight of 48 kDa. The coding sequence was preceded by a putative ribosome binding site, the transcription initiation signals, and cia-acting catabolite responsive element. The deduced amino acids sequence of xylanase is similar to those of the xylanases from Hordeum vulgare (barley) and Clostridium thermocellum, with 39 and 31% identical residues, respectively. The amino acids sequence of this xylanase was quite different from those of the xylanases from other Bacillus species.

Effect of GC Content on Target Hook Required for Gene Isolation by Transformation-Associated Recombination Cloning (Transformation-associated recombination cloning에 의한 유전자 분리에 사용되는 target hook에 대한 GC content의 영향)

  • 김중현;신영선;윤영호;장형진;김은아;김광섭;정정남;박인호;임선희
    • Korean Journal of Microbiology
    • /
    • v.39 no.3
    • /
    • pp.128-134
    • /
    • 2003
  • Transformation-associated recombination (TAR) cloning is based on co-penetration into yeast spheroplasts of genomic DNA along with TAR vector DNA that contains 5'- and 3'-sequences (hooks) specific for a gene of interest, followed by recombination between the vector and the human genomic DNA to establish a circular YAC. Typically, the frequency of recombinant insert capture is 0.01-1% for single-copy genes by TAR cloning. To further refine the TAR cloning technology, we determined the effect of GC content on target hooks required for gene isolation utilizing the $Tg\cdot\AC$ mouse transgene as the targeted region. For this purpose, a set of vectors containing a B1 repeated hook and Tg AC-specific hooks of variable GC content (from 18 to 45%) was constructed and checked for efficiency of transgene isolation by radial TAR cloning. Efficiency of cloning decreased approximately 2-fold when the TAR vector contained a hook with a GC content ~${\leq}23$% versus ~40%. Thus, the optimal GC content of hook sequences required for gene isolation by TAR is approximately 40%. We also analyzed how the distribution of high GC content (65%) within the hook affects gene capture, but no dramatic differences for gene capturing were observed.

Soluble Production of CMP-Neu5Ac Synthetase by Co-expression of Chaperone Proteins in Escherichia coli (샤페론 단백질 동시 발현기술을 이용한 수용성 CMP-Neu5Ac Synthetase 생산)

  • Choi, Hwa Young;Li, Ling;Cho, Seung Kee;Lee, Won-Heong;Seo, Jin-Ho;Han, Nam Soo
    • Microbiology and Biotechnology Letters
    • /
    • v.42 no.2
    • /
    • pp.190-193
    • /
    • 2014
  • CMP-Neu5Ac synthetase is a key enzyme for the synthesis of CMP-Neu5Ac, which is an essential precursor of sialylated glycoconjugates. For the soluble expression of the CMP-Neu5Ac synthetase gene (neuA) from Escherichia coli K1, various heat shock proteins were co-expressed in E. coli BL21 (DE3) Star. In order to do this, a pG-KJE8 plasmid, encoding genes for GroEL-ES and DnaK-DnaJ-GrpE, was co-transformed with neuA and was expressed at $20^{\circ}C$ by the addition of 0.01 mM IPTG and 0.005 mg/ml L-arabinose. The co-expression of a variety of heat shock proteins resulted in the remarkably improved production of soluble CMP-Neu5Ac synthetase in E. coli.

Molecular Cloning and Expression of Human Dihydrolipoamide Dehydrogenase-Binding Protein in Excherichia coli

  • Lee, Jeong-Min;Ryou, Chong-Suk;Kwon, Moo-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.4
    • /
    • pp.592-597
    • /
    • 2001
  • The pyruvate dehydrogenase complex (PDC) catalyzes the oxidative decarboxylation of pyruvate with the formation of $CO_2$, acetyl-CoA, NADH, and H+. This complex contains multiple copies of three catalytic components including pyruvate dehydrogenase(E1), dihydrolipoamide acetyltransferase(E2), and dihydrolipoamide dehydrogenase (E3). Two regulatory components (E1-kinase and phospho-E1 phosphatase) and functionally less-understood protein (protein X, E3BP) are also involved in the formation of the complex. In this study, cloning and characterization of a gene for human E3BP have been carried out. A cDNA encoding the human E3BP was isolated by database search and cDNA library screening. The primary structure of E3BP has some similar characteristics with that of E2 in the lipoyl domain and the carboxyl-terminal domain, based on the nucleotide sequence and the deduced amino acid sequence. However, the conserved amino acid moiety including the histidine residue for acetyltransferase activity in E2 is not conserved in the case of human E3BP. The human E3BP was expressed and purified in E. coli. The molecular weight of the protein, excluding the mitochondrial target sequence, was about 50 kDa as determined by SDS-PAGE. Cloning of human E3BP and expression of the recombinant E3BP will facilitate the understanding of the role(s) of E3BP in mammalian PDC.

  • PDF

Effect of Bcl-2 on Apoptosis and Transcription Factor NF-κB Activation Induced by Adriamycin in Bladder Carcinoma BIU87 Cells

  • Zhang, Guo-Jun;Zhang, Zhe
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.4
    • /
    • pp.2387-2391
    • /
    • 2013
  • Resistance to apoptosis is a major obstacle preventing effective therapy for malignancies. Bcl-2 plays a significant role in inhibiting apoptosis. We reconstructed a stable human Bcl-2 transfected cell line, BIU87-Bcl-2, that was derived from the transfection of human bladder carcinoma cell line BIU87 with a plasmid vector containing recombinant Bcl-2 [pcDNA3.1(+)-Bcl-2]. A cell line transfected with the plasmid alone [pcDNA3.1(+)-neo] was also established as a control. BIU87 and BIU87-neo proved sensitive to adriamycin induced apoptosis, while BIU87-Bcl-2 was more resistant. In view of the growing evidence that NF-${\kappa}B$ may play an important role in regulating apoptosis, we determined whether Bcl-2 could modulate the activity of NF-${\kappa}B$ in bladder carcinoma cells. Stimulation of BIU87, BIU87-neo and BIU87-Bcl-2 with ADR resulted in an increase expression of NF-${\kappa}B$ (p<0.001). The expression of NF-${\kappa}B$ in BIU87-Bcl-2 was higher than in the other two cases, with a concomitant reduction in the $I{\kappa}B{\kappa}$ protein level. These results suggest that the overexpression of Bcl-2 renders human bladder carcinoma cells resistant to adriamycin-induced cytotoxicity and there is a link between Bcl-2 and the NF-${\kappa}B$ signaling pathway in the suppression of apoptosis.

Current Status of Production of Transgenic Livestock by Genome Editing Technology (유전자 편집 기술에 의한 형질전환 가축의 생산 현황)

  • Park, Da Som;Kim, Soseob;Koo, Deog-Bon;Kang, Man-Jong
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.34 no.3
    • /
    • pp.148-156
    • /
    • 2019
  • The Transgenic livestock can be useful for the production of disease-resistant animals, pigs for xenotranplantation, animal bioreactor for therapeutic recombinant proteins and disease model animals. Previously, conventional methods without using artificial nuclease-dependent DNA cleavage system were used to produce such transgenic livestock, but their efficiency is known to be low. In the last decade, the development of artificial nucleases such as zinc-finger necleases (ZFNs), transcription activator-like effector nucleases (TALENs) and clustered regulatory interspaced short palindromic repeat (CRISPR)/Cas has led to more efficient production of knock-out and knock-in transgenic livestock. However, production of knock-in livestock is poor. In mouse, genetically modified mice are produced by coinjecting a pair of knock-in vector, which is a donor DNA, with a artificial nuclease in a pronuclear fertilized egg, but not in livestock. Gene targeting efficiency has been increased with the use of artificial nucleases, but the knock-in efficiency is still low in livestock. In many research now, somatic cell nuclear transfer (SCNT) methods used after selection of cell transfected with artificial nuclease for production of transgenic livestock. In particular, it is necessary to develop a system capable of producing transgenic livestock more efficiently by co-injection of artificial nuclease and knock-in vectors into fertilized eggs.

Partial genomic sequence of baulovirus associated with white spot syndrome (WSBV) isolated from penaeid shrimp P. chinensis (대하새우로부터 분리한 WSBV의 게놈서열 분석)

  • Kim, Chong-Kyung;Sohn, Sang-Gyu;Heo, Moon-Soo;Lee, Tae-Ho;Jun, Hong-Ki;Jang, Kyung-Lib
    • Journal of fish pathology
    • /
    • v.10 no.2
    • /
    • pp.87-95
    • /
    • 1997
  • Baculovirus associated with white spot syndrome (WSBV) is the causative agent of a disease with high mortalities and causes severe damage to shrimp cultures. In this study, we analyzed a recombinant clone (E3) obtained from a viral genomic library to characterize the causative agent in diseased shrimp Penaeus chinensis with white spot syndrome. According to the analysis of nucleotide sequence of E3, this clone did not showed considerable sequence homology with those of other known viruses, including baculovirus Autographa californica nuclear polyhedrosis virus (AcNPV), indicating that WSBV is a novel virus causing a serious disease in P. chinensis. Based on the sequence of E3 clone, a pair of PCR primers was designed. After 30 cycles of amplification, a specific product of the expected size was detected only if the total nucleic acids extracted from the diseased shrimp was used as a template DNA, suggesting that this method can be used to diagnose the virus infection in diseased shrimp.

  • PDF

Molecular Cloning of nifHD from Rhizobium sp. SNU003 (Rhizobium sp. SNU003의 nifHD 클로닝)

  • 강명수;안정선
    • Korean Journal of Microbiology
    • /
    • v.31 no.2
    • /
    • pp.123-128
    • /
    • 1993
  • Genes for dinitrogenase reductase (nifH) and dinitogenase a subunit (nifD) were found to be located on 7.9 kb of EcoRI, 6.5 kb of Sail, 7.3 kb of HindlII and 4.4 kb of Pstl fragments of the genomic blot of Rhizobium sp. SNU003. a symbiotic strain from root nodule of Canavalia lineata. Nine recombinant phage nif-clones were selected from the genomic library constructed by using EMBL-3 BamHI arms of bacteriophage lambda. Among them. Rnif-6 had insert DNA of 15.3 kb. in which 7.6 kb of BamHI!SacI fragment contained nifHD region. Therefore, the 7.6 kb fragment was subcloned into pUC19 and partial restriction map was constructed. As the results, nifH and nifD were found to be located continuously on 4.5 kb of BamHI/BglIl in the genome of Rhizobium sp. SNU003 strain.

  • PDF