DOI QR코드

DOI QR Code

Current Status of Production of Transgenic Livestock by Genome Editing Technology

유전자 편집 기술에 의한 형질전환 가축의 생산 현황

  • Park, Da Som (Department of Animal Science, College of Agriculture and Life Science, Chonnam National University) ;
  • Kim, Soseob (Gwanggaeto Hanwoo) ;
  • Koo, Deog-Bon (Department of Biotechnology, College of Engineering, Daegu University) ;
  • Kang, Man-Jong (Department of Animal Science, College of Agriculture and Life Science, Chonnam National University)
  • 박다솜 (전남대학교 농업생명과학대학 동물자원학부) ;
  • 김소섭 (광개토한우) ;
  • 구덕본 (대구대학교 공과대학 생명공학과) ;
  • 강만종 (전남대학교 농업생명과학대학 동물자원학부)
  • Received : 2019.09.11
  • Accepted : 2019.09.17
  • Published : 2019.09.30

Abstract

The Transgenic livestock can be useful for the production of disease-resistant animals, pigs for xenotranplantation, animal bioreactor for therapeutic recombinant proteins and disease model animals. Previously, conventional methods without using artificial nuclease-dependent DNA cleavage system were used to produce such transgenic livestock, but their efficiency is known to be low. In the last decade, the development of artificial nucleases such as zinc-finger necleases (ZFNs), transcription activator-like effector nucleases (TALENs) and clustered regulatory interspaced short palindromic repeat (CRISPR)/Cas has led to more efficient production of knock-out and knock-in transgenic livestock. However, production of knock-in livestock is poor. In mouse, genetically modified mice are produced by coinjecting a pair of knock-in vector, which is a donor DNA, with a artificial nuclease in a pronuclear fertilized egg, but not in livestock. Gene targeting efficiency has been increased with the use of artificial nucleases, but the knock-in efficiency is still low in livestock. In many research now, somatic cell nuclear transfer (SCNT) methods used after selection of cell transfected with artificial nuclease for production of transgenic livestock. In particular, it is necessary to develop a system capable of producing transgenic livestock more efficiently by co-injection of artificial nuclease and knock-in vectors into fertilized eggs.

Keywords

References

  1. Aymard F, Bugler B, Schmidt CK, Guillou E, Caron P, Briois S, Iacovoni JS, Daburon V, Miller KM, Jackson SP, Legube G. 2014. Transcriptionally active chromatin recruits homologous recombination at DNA double strand breaks. Nat Struct Mol Biol. 21(4):366-374. https://doi.org/10.1038/nsmb.2796
  2. Bao L, Chen H, Jong U, Rim C, Li W, Lin X, Zhang D, Luo Q, Cui C, Huang H, Zhang Y, Xiao L, Fu Z. 2014. Generation of GGTA1 biallelic knockout pigs via zinc-finger nucleases and somatic cell nuclear transfer. Sci China Life Sci. 57(2):263-268. https://doi.org/10.1007/s11427-013-4601-2
  3. Bollag RJ, Waldman AS, Liskay RM. 1989. Homologous recombination in mammalian cells. Annu Rev Genet. 23:199-225. https://doi.org/10.1146/annurev.ge.23.120189.001215
  4. Brandon EP, Idzerda RL, McNight GS. 1995. Targeting the mouse genome: a compendium of knockouts. Current Biology. 5(7):758-765. https://doi.org/10.1016/S0960-9822(95)00152-7
  5. Burkard C, Lillico SG, Reid E, Jackson B, Mileham AJ, Ait-Ali T, Whitelaw CB, Archibald AL. 2017. Precision engineering for PRRSV resistance in pigs: Macrophages from genome edited pigs lacking CD163 SRCR5 domain are fully resistant to both PRRSV genotypes while maintaining biological function. PLoS Pathog. 13(2):e1006206. https://doi.org/10.1371/journal.ppat.1006206
  6. Butler JR, Martens GR, Estrada JL, Reyes LM, Ladowski JM, Galli C, Perota A, Cunningham CM, Tector M, Joseph Tector A. 2016. Silencing porcine genes significantly reduces human-anti-pig cytotoxicity profiles: an alternative to direct complement regulation. Transgenic Res. 25(5):751-759. https://doi.org/10.1007/s11248-016-9958-0
  7. Byrne SM, Ortiz L, Mali P, Aach J, Church GM. 2015. Multi-kilo base homozygous targeted gene replacement in human induced pluripotent stem cells. Nucleic Acids Res. 43(3):e21. https://doi.org/10.1093/nar/gku1246
  8. Carlson DF, Lancto CA, Zang B, Kim ES, Walton M, Oldeschulte D, Seabury C, Sonstegard TS, Fahrenkrug SC. 2016. Production of hornless dairy cattle from genome-edited cell lines. Nat Biotechnol. 34(5):479-481. https://doi.org/10.1038/nbt.3560
  9. Carlson DF, Tan W, Lillico SG, Stverakova D, Proudfoot C, Christian M, Voytas DF, Long CR, Whitelaw CB, Fahrenkrug SC. 2012. Efficient TALEN-mediated gene knockout in livestock. Proc Natl Acad Sci U S A. 109(43):17382-17387. https://doi.org/10.1073/pnas.1211446109
  10. Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, Schmidt C, Baller JA, Somia NV, Bogdanove AJ, Voytas DF. 2011. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res. 39(12):e82. https://doi.org/10.1093/nar/gkr218
  11. Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, Bogdanove AJ, Voytas DF. 2010. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics. 186(2):757-761. https://doi.org/10.1534/genetics.110.120717
  12. Chu VT, Weber T, Graf R, Sommermann T, Petsch K, Sack U, Volchkov P, Rajewsky K, Kuhn R. 2016. Efficient generation of Rosa26 knock-in mice using CRISPR/Cas9 in C57BL/6 zygote. BMC Biotechnol. 16:4. https://doi.org/10.1186/s12896-016-0234-4
  13. Clark AJ. 1998. The mammary gland as a bioreactor: expression, processing, and production of recombinant proteins. J Mammary Gland Biol Neoplasia. 3:337-350. https://doi.org/10.1023/A:1018723712996
  14. Clark AJ, Burl S, Denning C, Dickinson P. 2000. Gene targeting in livestock : A preview. Transgenic Res. 9(4-5):263-275. https://doi.org/10.1023/A:1008974616402
  15. Cui C, Song Y, Liu J, Ge H, Li Q, Huang H, Hu L, Zhu H, Jin Y, Zhang Y. 2015. Gene targeting by TALEN-induced homologous recombination in goats directs production of $\beta$-lactoglobulin-free, high-human lactoferrin milk. Sci Rep. 5:10482. https://doi.org/10.1038/srep10482
  16. Dai Y, Vaught TD, Boone V, Chen SH, Phelps CJ, Ball S, Monahan JA, Jobst PM, McCreath KJ, Lamborn AE, Cowell-Lucero JL, Wells KD, Colman A, Polejaeva IA, Ayares DL. 2002. Targeted disruption of the ${\alpha}1$,3-galactosyltransferase gene in cloned pigs. Nat Biotechnol. 20:251-255. https://doi.org/10.1038/nbt0302-251
  17. Denning C, Burl S, Ainslie A, Bracken J, Dinnyes A, Fletcher J, King T, Ritchie M, Ritchie WA, Rollo M, de Sousa P, Travers A, Wilmut I, Clark AJ. 2001. Deletion of the alpha(1,3) galactosyl transferase(GGTA1) gene and the prion protein(PrP) gene in sheep. Nat Biotechnol. 19(6):559-562. https://doi.org/10.1038/89313
  18. Denning C, Priddle H. 2003. New frontiers in gene targeting and cloning: success, application and challenges in domestic animals and human embryonic stem cells. Reproduction. 126:1-11. https://doi.org/10.1530/reprod/126.1.1
  19. Doetschman T, Maeda N, Smithies O. 1998. Targeted mutation of the Hprt gene in mouse embryonic stem cells. Proc Natl Acad Sci U S A. 85:8583-8587. https://doi.org/10.1073/pnas.85.22.8583
  20. Gaj T, Gersbach CA, Barbas CF 3rd. 2013. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 31:397-395. https://doi.org/10.1016/j.tibtech.2013.04.004
  21. Gao Y, Wu H, Wang Y, Liu X, Chen L, Li Q, Cui C, Liu X, Zhang J, Zhang Y. 2017. Single Cas9 nickase induced generation of NRAMP1 knockin cattle with reduced off-target effects. Genome Biol. 18(1):13. https://doi.org/10.1186/s13059-016-1144-4
  22. Hai T, Teng F, Guo R, Li W, Zhou Q. 2014. One-step generation of knockout pigs by zygote injection of CRISPR/Cas system. Cell Res. 24(3):372-375. https://doi.org/10.1038/cr.2014.11
  23. Hauschild J, Petersen B, Santiago Y, Queisser AL, Carnwath JW, Lucas-Hahn A, Zhang L, Meng X, Gregory PD, Schwinzer R, Cost GJ, Niemann H. 2011. Efficient generation of a biallelic knockout in pigs using zinc-finger nucleases. Proc Natl Acad Sci U S A. 108(29):12013-12017. https://doi.org/10.1073/pnas.1106422108
  24. Hisano Y, Sakuma T, Nakade S, Ohga R, Ota S, Okamoto H, Yamam T. 2015. Precise in-frame integration of exogenous DNA mediated by CRISPR/Cas9 system in zebrafish. Sci Rep. 5:8841. https://doi.org/10.1038/srep08841
  25. Houdebine LM. 2000. Transgenic animal bioreactors. Transgenic Res. 9:305-320. https://doi.org/10.1023/A:1008934912555
  26. Houdebine LM. 2009. Production of pharmaceutical proteins by transgenic animals. Comp Immunol Microbiol Infect Dis. 32:107-121. https://doi.org/10.1016/j.cimid.2007.11.005
  27. Howden SE, Maufort JP, Duffin BM, Elefanty AG, Stanley EG, Thomson JA. 2015. Simultaneous reprogramming and gene correction of patient fibroblasts. Stem Cell Rep. 5:1109-1118. https://doi.org/10.1016/j.stemcr.2015.10.009
  28. Jasin M, Moynahan ME, Richardson C. 1996. Targeted transgenesis. Proc Natl Acad Sci U S A. 93:8804-8808. https://doi.org/10.1073/pnas.93.17.8804
  29. Jayathilaka K, Sheridan SD, Bold TD, Bochenska K, Logan HL, Weichselbaum RR, Bishop DK, Connell PP. 2008. A chemical compound that stimulates the human homologous recombination protein RAD51. Proc Natl Acad Sci U S A. 105:15848-15853. https://doi.org/10.1073/pnas.0808046105
  30. Kim YG, Cha J, Chandrasegaran S. 1996. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci U S A. 93(3):1156-1160. https://doi.org/10.1073/pnas.93.3.1156
  31. Klymiuk N, Aigner B, Brem G, Wolf E. 2010. Genetic modification of pigs as organ donors for xenotransplantation. Mol Reprod Dev. 77(3):209-221. https://doi.org/10.1002/mrd.21127
  32. Koller BH, Hagemann LJ, Doetschman T, Hagaman JR, Huang S, Williams PJ, First NL, Maeda N, Smithies O. 1989. Germlinetransmission of a planned alteration made in a hypoxanthine phosphoribosyltransferase gene by homologous recombination in embryonic stem cells. Proc Natl Acad Sci U S A. 86(22):8927-8931. https://doi.org/10.1073/pnas.86.22.8927
  33. Kwon DN, Lee K, Kang MJ, Choi YJ, Park C, Whyte JJ, Brown AN, Kim JH, Samuel M, Mao J, Park KW, Murphy CN, Prather RS, Kim JH. 2013. Production of biallelic CMP-Neu5Ac hydroxylase knock-out pigs. Sci Rep. 3:1981. https://doi.org/10.1038/srep01981
  34. Lai L, Kolber-Simonds D, Park KW, Cheong HT, Greenstein CJ, Im GS, Samuel M, Bonk A, Rieke A, Day BN, Murphy CN, Carter DB, Hawley RJ, Prather RS. 2002. Production of a-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning. Science. 295:1089-1092. https://doi.org/10.1126/science.1068228
  35. Lai S, Wei S, Zhao B, Ouyang Z, Zhang Q, Fan N, Liu Z, Zhao Y, Yan Q, Zhou X, Li L, Xin J, Zeng Y, Lai L, Zou Q. 2016. Generation of knock-in pigs carrying Oct4-tdTomato reporter through CRISPR/Cas9-mediated genome engineering. PLoS ONE. 11(1):e0146562. https://doi.org/10.1371/journal.pone.0146562
  36. Ledermann B. 2000. Embryonic stem cells and gene targeting. Exp Physiol. 85:603-613. https://doi.org/10.1017/S0958067000021059
  37. Li X, Hao F, Hu X, Wang H, Dai B, Wang X, Liang H, Cang M, Liu D. 2019. Generation of $T{\beta}4$ knock-in Cashmere goat using CRISPR/Cas9. Int J Biol Sci. 15(8):1743-1754. https://doi.org/10.7150/ijbs.34820
  38. Liu X, Wang Y, Guo W, Chang B, Liu J, Guo Z, Quan F, Zhang Y. 2013. Zinc-finger nickase-mediated insertion of the lysostaphin gene into the beta-casein locus in cloned cows. Nat Commun. 4:2565. https://doi.org/10.1038/ncomms3565
  39. Liu X, Wang Y, Tian Y, Yu Y, Gao M, Hu G, Su F, Pan S, Luo Y, Guo Z, Quan F, Zhang Y. 2014. Generation of mastitis resistance in cows by targeting human lysozyme gene to $\beta$-casein locus using zinc-finger nucleases. Proc Biol Sci. 281(1780):20133368.
  40. Luo J, Song Z, Yu S, Cui D, Wang B, Ding F, Li S, Dai Y, Li N. 2014. Efficient generation of myostatin (MSTN) biallelic mutations in cattle using zinc finger nucleases. PLoS One. 9(4):e95225. https://doi.org/10.1371/journal.pone.0095225
  41. Lv Q, Yuan L, Deng J, Chen M, Wang Y, Zeng J, Li Z, Lai L. 2016. Efficient generation of myostatin gene mutated rabbit by CRISPR/Cas9. Sci Rep. 6:25029. https://doi.org/10.1038/srep25029
  42. Makarova KS, Haft DH, Barrangou R, Brouns SJ, Charpentier E, Horvath P, Moineau S, Mojica FJ, Wolf YI, Yakunin AF, van der Oost J, Koonin EV. 2011. Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol. 9(6):467-477. https://doi.org/10.1038/nrmicro2577
  43. Mao Z, Bozzella M, Seluanov A, Gorbunova V. 2008. DNA repair by nonhomologous end joining and homologous recombination during cell cycle in human cells. Cell Cycle. 7(18):2902-2906. https://doi.org/10.4161/cc.7.18.6679
  44. Maruyama T, Dougan SK, Truttmann MC, Bilate AM, Ingram JR, Ploegh HL. 2015. Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of non homologous end joining. Nat Biotechnol. 33:538-542. https://doi.org/10.1038/nbt.3190
  45. McCreath KJ, Howcroft J, Campbell KH, Colman A, Schnieke AE, Kind AJ. 2000. Production of gene-targeted sheep by nuclear transfer from cultured somatic cells. Nature. 405(6790):1066-1069. https://doi.org/10.1038/35016604
  46. McVey M, Lee SE. 2008. MMEJ repair of double-strand breaks (director's cut): deleted sequences and alternative endings. Trends Genet. 24(11):529-538. https://doi.org/10.1016/j.tig.2008.08.007
  47. Ni W, Qiao J, Hu S, Zhao X, Regouski M, Yang M, Polejaeva IA, Chen C. 2014. Efficient gene knockout in goats using CRISPR/ Cas9 system. PLoS One. 9(9):e106718. https://doi.org/10.1371/journal.pone.0106718
  48. Noh EJ, Lim DS, Jeong G, Lee JS. 2009. An HDAC inhibitor, trichostatin A, induces a delay at G2/M transition, slippage of spindle checkpoint, and cell death in a transcriptiondependent manner. Biochem Biophys Res Commun. 378(3):326-331. https://doi.org/10.1016/j.bbrc.2008.11.057
  49. Park KE, Kaucher AV, Powell A, Waqas MS, Sandmaier SE, Oatley MJ, Park CH, Tibary A, Donovan DM, Blomberg LA, Lillico SG, Whitelaw CB, Mileham A, Telugu BP, Oatley JM. 2017. Generation of germline ablated male pigs by CRISPR/ Cas9 editing of the NANOS2 gene. Sci Rep. 7:40176. https://doi.org/10.1038/srep40176
  50. Park TS. 2019. Current strategies of genomic modification in livestock and applications in poulty. J Anim Reprod Biotechnol 34:65-69. https://doi.org/10.12750/JARB.34.2.65
  51. Petersen B. 2017. Basics of genome editing technology and its application in livestock species. Reprod Domest Anim. 3:4-13. https://doi.org/10.1111/rda.13012
  52. Piedrahita JA. 2000. Targeted modification of the domestic animal genome. Theriogenology. 53:105-116. https://doi.org/10.1016/S0093-691X(99)00244-7
  53. Pinder J, Salsman J, Dellaire G. 2015. Nuclear domain 'knockin' screen for the evaluation and identification of small molecule enhancers of CRISPR-based genome editing. Nucleic Acids Res. 43(19):9379-9392. https://doi.org/10.1093/nar/gkv993
  54. Proudfoot C, Carlson DF, Huddart R, Long CR, Pryor JH, King TJ, Lillico SG, Mileham AJ, McLaren DG, Whitelaw CB, Fahrenkrug SC. 2015. Genome edited sheep and cattle. Transgenic Res. 24(1):147-153. https://doi.org/10.1007/s11248-014-9832-x
  55. Raveux A, Vandormael-Pournin S, Cohen-Tannoudji M. 2017. Optimization of the production of knock-in alleles by CRISPR/Cas9 microinjection into the mouse zygote. Sci Rep. 7:42661. https://doi.org/10.1038/srep42661
  56. Reyes LM, Estrada JL, Wang ZY, Blosser RJ, Smith RF, Sidner RA, Paris LL, Blankenship RL, Ray CN, Miner AC, Tector M, Tector AJ. 2014. Creating class I MHC-null pigs using guide RNA and the Cas9 endonuclease. J Immunol. 193(11):5751-5757. https://doi.org/10.4049/jimmunol.1402059
  57. Robl JM, Wang Z, Kasinathan P, Kuroiwa Y. 2007. Transgenic animal production and animal biotechnology. Theriogenology. 67:127-133. https://doi.org/10.1016/j.theriogenology.2006.09.034
  58. Sakuma T, Woltjen K. 2014. Nuclease-mediated genome editing: At the front-line of functional genomics technology. Dev Growth Differ. 56:2-13. https://doi.org/10.1111/dgd.12111
  59. Sander JD, Joung JK. 2014. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol. 32(4):347-355. https://doi.org/10.1038/nbt.2842
  60. Schwartzberg PL, Goff SP, Robertson EJ. 1989. Germ-line transmission of a c-abl mutation produced by targeted gene disruption in ES cells. Science. 246:799-803. https://doi.org/10.1126/science.2554496
  61. Sedivy JM, Vogelstein B, Liber HL, Hendrickson EA, Rosmarin A. 1999. Gene targeting in human cells without isogenic DNA. Science. 283.
  62. Shen W, Lan G, Yang X, Li L, Min L, Yang Z, Tian L, Wu X, Sun Y, Chen H, Tan J, Deng J, Pan Q. 2007. Targeting the exogenous htPAm gene on goat somatic cell beta-casein locus for transgenic goat production. Mol Reprod Dev. 74:428-434. https://doi.org/10.1002/mrd.20595
  63. Smithies O, Gregg RG, Boggs SS, Koralewski MA, Kucherlapati RS. 1985. Insertion of DNA sequences into the human chromosomal beta-globin locus by homologous recombination. Nature. 317(6034):230-234. https://doi.org/10.1038/317230a0
  64. Song J, Yang D, Xu J, Zhu T, Chen YE, Zhang J. 2016. RS-1 enhances CRISPR/Cas9- and TALEN-mediated knock-in efficiency. Nat Commun. 7:10548. https://doi.org/10.1038/ncomms10548
  65. Takayama K, Igai K, Hagihara Y, Hashimoto R, Hanawa M, Sakuma T, Tachibana M, Sakurai F, Yamamoto T, Mizuguchi H. 2017. Highly efficient biallelic genome editing of human ES/iPS cells using a CRISPR/Cas9 or TALEN system. Nucleic Acids Res. 45(9):5198-5207. https://doi.org/10.1093/nar/gkx130
  66. Taleei R, Nikjoo H. 2013. The non-homologous end-joining (NHEJ) pathway for the repair of DNA double-strand breaks: I. A mathematical model. Radiat Res. 179(5):530-539. https://doi.org/10.1667/RR3123.1
  67. Tan W, Proudfoot C, Lillico SG, Whitelaw CB. 2016. Gene targeting, genome editing: from Dolly to editors. Transgenic Res. 25(3):273-287. https://doi.org/10.1007/s11248-016-9932-x
  68. Thomas KR, Capecchi MR. 1987. Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell. 51(3):503-512. https://doi.org/10.1016/0092-8674(87)90646-5
  69. Thomas KR, Deng C, Capecchi MR. 1992. High-fidelity gene targeting in embryonic stem cells by using sequence replacement vectors. Mol Cell Biol. 12:2919-2923. https://doi.org/10.1128/MCB.12.7.2919
  70. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM. 1998. Embryonic stem cell lines derived from human blastocysts. Science. 282(5391):1145-1147. https://doi.org/10.1126/science.282.5391.1145
  71. Urnov FD, Miller JC, Lee YL, Beausejour CM, Rock JM, Augustus S, Jamieson AC, Porteus MH, Gregory PD, Holmes MC. 2005. Highly efficient endogenous human gene correction using designed zinc finger nucleases. Nature. 435:646-651. https://doi.org/10.1038/nature03556
  72. Wang B, Zhou J. 2003. Specific genetic modifications of domestic animals by gene targeting and animal cloning. Reprod Biol Endocrinol. 1:103. https://doi.org/10.1186/1477-7827-1-103
  73. Wang X, Yu H, Lei A, Zhou J, Zeng W, Zhu H, Dong Z, Niu Y, Shi B, Cai B, Liu J, Huang S, Yan H, Zhao X, Zhou G, He X, Chen X, Yang Y, Jiang Y, Shi L, Tian X, Wang Y, Ma B, Huang X, Qu L, Chen Y. 2015. Generation of gene-modified goats targeting MSTN and FGF5 via zygote injection of CRISPR/Cas9 system. Sci Rep. 5:13878. https://doi.org/10.1038/srep13878
  74. Wei J, Wagner S, Maclean P, Brophy B, Cole S, Smolenski G, Carlson DF, Fahrenkrug SC, Wells DN, Laible G. 2018. Cattle with a precise, zygote-mediated deletion safely eliminate the major milk allergen beta-lactoglobulin. Sci Rep. 8(1):7661. https://doi.org/10.1038/s41598-018-25654-8
  75. Whitworth KM, Rowland RR, Ewen CL, Trible BR, Kerrigan MA, Cino-Ozuna AG, Samuel MS, Lightner JE, McLaren DG, Mileham AJ, Wells KD, Prather RS. 2016. Gene-edited pigs are protected from porcine reproductive and respiratory syndrome virus. Nat Biotechnol. 34(1):20-22. https://doi.org/10.1038/nbt.3434
  76. Wolf E, Schernthaner W, Zakhartchenko V, Prelle K, Stojkovic M, Brem G. 2000. Transgenic technology in farm animals - progress and perspectives. Exp Physiol. 85:615-625. https://doi.org/10.1017/S0958067000021102
  77. Wu H, Wang Y, Zhang Y, Yang M Lv J, Liu J, Zhang Y. 2015. TALE nickase-mediated SP110 knockin endows cattle with increased resistance to tuberculosis. Proc Natl Acad Sci U S A. 112(13):E1530-1539. https://doi.org/10.1073/pnas.1421587112
  78. Wyman C, Kanaar R. 2006. DNA double-strand break repair: all's well that ends well. Annu Rev Genet. 40:363-383. https://doi.org/10.1146/annurev.genet.40.110405.090451
  79. Yanez RJ, Porter AC. 1998. Therapeutic gene targeting. Gene Ther. 5(2):149-159. https://doi.org/10.1038/sj/gt/3300601
  80. Yang D, Yang H, Li W, Zhao B, Ouyang Z, Liu Z, Zhao Y, Fan N, Song J, Tian J, Li F, Zhang J, Chang L, Pei D, Chen YE, Lai L. 2011. Generation of $PPAR{\gamma}$ mono-allelic knockout pigs via zinc-finger nucleases and nuclear transfer cloning. Cell Res. 21(6):979-982. https://doi.org/10.1038/cr.2011.70
  81. Yang H, Wang H, Jaenisch R. 2014. Generating genetically modified mice using CRISPR/Cas-mediated genome engineering. Nat Protoc. 9(8):1956-1968. https://doi.org/10.1038/nprot.2014.134
  82. Yu S, Luo J, Song Z, Ding F, Dai Y, Li N. 2011. Highly efficient modification of beta-lactoglobulin (BLG) gene via zincfinger nucleases in cattle. Cell Res. 21(11):1638-1640. https://doi.org/10.1038/cr.2011.153