International Journal of Control, Automation, and Systems
/
제1권1호
/
pp.134-141
/
2003
A major research issue associated with service robots is the creation of an environment recognition system for mobile robot navigation that is robust and efficient on various environment situations. In recent years, intelligent autonomous mobile robots have received much attention as the types of service robots for serving people and industrial robots for replacing human. To help people, robots must be able to sense and recognize three dimensional space where they live or work. In this paper, we propose a three dimensional environmental modeling method based on an edge enhancement technique using a planar fitting method and a neural network technique called "Growing Neural Gas Network." Input data pre-processing provides probabilistic density to the input data of the neural network, and the neural network generates a graphical structure that reflects the topology of the input space. Using these methods, robot's surroundings are autonomously clustered into isolated objects and modeled as polygon patches with the user-selected resolution. Through a series of simulations and experiments, the proposed method is tested to recognize the environments surrounding the robot. From the experimental results, the usefulness and robustness of the proposed method are investigated and discussed in detail.in detail.
기존의 독립 요소 방법에 의한 얼굴인식에서는 주 요소 해석법으로 고유치 크기에 의해 특징을 추출하고 감소된 차원에서 특징 개선을 위한 독립 요소 해석법의 학습을 수행한다. 제거된 특징 공간 내에 필요한 요소가 있는 경우를 고려하지 못한 것이다. 새로운 방법은 독립 요소 해석에 의한 학습을 먼저 시행하고 분리된 데이터를 4차 중심 모멘트에 의한 축적 계수(cumulant)인 커토시스(kurtosis)의 절대값 크기에 의하여 특징을 추출한다. 하지만 독립 요소 방법은 효과적으로 노이즈를 제거하지 못한다. 두 방법의 결합효과는 주 요소 해석법을 노이즈 필터로 사용 할 때 극대화 될 수 있다. 즉 주 요소 해석법을 백색화와 노이즈 필터로 하고 독립 요소 해석법을 특징 추출 방법으로 사용하는 것이다. 실험 결과는 새로운 방법론이 기존의 방법론보다 우수함을 보여준다.
본 논문에서는 척추 자기공명영상에 대하여 자동적으로 질환에 관련된 특징 벡터들을 추출하고 디스크 질환을 인식하는 방법을 제안하였다. 척추 자기공명영상은 절단면에 따라 시상 단면 영상과 축 단면 영상으로 나누어 진다. 두가지 영상에서 질환에 관련된 특징 벡터를 추출하여 질환의 유무와 종류를 인식하는데 사용하였다. 시상 단면 영상에서는 각 부위에 해당하는 영역의 동질성을 이용하여 디스크 부분을 추출한 후 영역레이블링 과정을 통해 전체적인 크기와 돌출 정도를 구해서 질환을 나타내는 특징으로 이용하였다. 축 단면 영상에서는 템플릿 정합을 이용하여 디스크 영역을 찾고 경계선을 추출하기 위해 세기와 방향성을 고려한 연산자를 사용했다. 경계선의 모양을 분석해서 디스크 돌출 정도에 관한 수치를 얻었다. 이렇게 얻은 특징벡터들은 유사한 질환을 가진 환자의 영상을 찾기 위한 의료 영상 데이터 베이스에 사용될 수 있으며, 많은 양의 영상에서 질환이 나타나 있는 것을 일차적으로 선별하여 전문의에게 제공하는데 이용될 수 있을 것으로 예상한다.
This paper introduces an adaptive and integrated utterance verification (UV) framework using minimum verification error (MVE) training as a new set of solutions suitable for real applications. UV is traditionally considered an add-on procedure to automatic speech recognition (ASR) and thus treated separately from the ASR system model design. This traditional two-stage approach often fails to cope with a wide range of variations, such as a new speaker or a new environment which is not matched with the original speaker population or the original acoustic environment that the ASR system is trained on. In this paper, we propose an integrated solution to enhance the overall UV system performance in such real applications. The integration is accomplished by adapting and merging the target model for UV with the acoustic model for ASR based on the common MVE principle at each iteration in the recognition stage. The proposed iterative procedure for UV model adaptation also involves revision of the data segmentation and the decoded hypotheses. Under this new framework, remarkable enhancement in not only recognition performance, but also verification performance has been obtained.
본 논문은 자동차 번호판 인식 시스템의 전반적인 성능을 향상시키기 위한 전처리 방법과 신경회로망을 이용한 문자 인식기를 제안한다. 먼저 자동차 번호판 영상에서 번호판의 외곽 직선을 가상 직선 매칭에 의해 검출하고 검출된 직선의 교점을 구하여 4개의 외곽 꼭지점을 구한다. 4개의 꼭지점 좌표에 의해 양선형 변환으로 직사각형 모양의 번호판 영상으로 정규화한다. 정규화된 번호판 영상으로부터 문자를 추출한 뒤 Delta-bar-delta 알고리즘에 의해 학습된 신경 회로망 기반 인식기로 번호판을 인식한다. 다양한 환경에서 획득된 자동차 번호판 영상을 대상으로 실험한 결과 제안된 번호판 이미지의 정규화에 의해 인식 성능이 16%까지 향상됨을 확인하였다.
In this study, character recognition using deep learning is performed among the various defects in the PCB, the purpose of which is to check whether the printed characters are printed correctly on top of components, or the incorrect parts are attached. Generally, character recognition may be perceived as not a difficult problem when considering MNIST, but the printed letters on the PCB component data are difficult to collect, and have very high redundancy. So if a deep learning model is trained with original data without any preprocessing, it can lead to over fitting problems. Therefore, this study aims to reduce the redundancy to the smallest dataset that can represent large amounts of data collected in limited production sites, and to create datasets through data enhancement to train a flexible deep learning model can be used in various production sites. Moreover, ResNet model verifies to determine which combination of datasets is the most effective. This study discusses how to reduce and augment data that is constantly occurring in real PCB production lines, and discusses how to select coresets to learn and apply deep learning models in real sites.
일반적인 음성인식 시스템은 조용한 인식 환경에서는 높은 인식성능을 나타내지만 잡음이 존재하는 실제 환경에서는 그 성능이 급격히 저하한다. 본 논문에서는 다양한 잡음환경에서도 강인한 음성인식기를 구현하기 위하여, 주파수의 변이도를 이용하여 음성인식을 위한 환경 정보를 얻고 이를 음성 인식을 위한 모델 개선에 적용하여 성능향상을 도모하는 환경정보 지식에 기반한 주파수 변이 적응 PMC (Parallel Model Combination adaptation using frequency-variant based on environment - awareness : FV-PMC) 방법을 제안한다. 이 방법은 미리 분류된 각 잡음 군간의 평균 주파수 변이도를 미리 계산하여 임계치로 설정하고 미지의 잡음이 포함된 음성이 입력되면 각 잡음 군과의 주파수 변이도를 다시 계산하여 해당 잡음군의 임계치 보다 높을 경우 그 잡음 군의 잡음이 포함된 음성으로 간주하여 이 잡음 군이 포함된 음성을 이용하여 생성된 인식모델을 이용하여 음성인식을 수행한다. 제안한 FV-PMC 방법을 이용하여 잡음을 분류 하였을 경우 평균 분류 정확도는 56%를 보였고 이를 이용해 음성인식 실험을 실시한 결과 Set A의 평균인식률은 79.05%, Set B의 평균인식률은 79.43%, Set C의 평균인식률은 83.37%로 나타났다. 전체 평균인식률 80.62%로 기존의 깨끗한 모델을 이용한 PMC 인식률 74.93% 보다 5.69% 향상된 결과를 보여 제안한 방법의 유효성을 확인할 수 있었다.
고 수준의 정보 보안이 요구되는 분야에서 최근 많이 사용되고 있는 홍채 인식 알고리즘에서는 홍채 근육의 무의 패턴을 이용하여 고유한 홍채 코드를 생성하고, 이를 이용하여 동일인인지 여부를 판별하게 된다. 그런데 홍채 영역의 위치에 다른 불필요한 정보가 포함되어 홍채 영역을 가리게 된다면, 홍채 인식에서 오류가 발생할 확률도 증가하게 된다. 그 불필요한 정보 중에 대표적인 것이 속눈썹이다. 홍채 영역을 덮고 있는 속눈썹을 홍채 패턴으로 취급하여 인식에 그대로 사용할 경우, 속눈썹의 위치가 변경되게 되면 그에 따라 홍채 코드 역시 바뀌게 되어 인식 오류도 증가하게 될 것이다. 이러한 문제점을 해결하기 위하여 이 논문에서는 마스크 기반으로 속눈썹을 추출함으로써 정확한 홍채 영역을 검출하고, 이를 이용하여 홍채 인식의 성능을 향상시키는 방법을 제안하고자 한다. 실험 결과 본 논문에서 제안하는 속눈썹 추출 알고리즘을 사용하지 않았을 때의 인식성능(EER)보다 제안하는 알고리즘을 사용했을 때의 인식 성능이 $0.18\%$ 향상되는 결과를 얻었다.
본 연구의 목적은 정신요양시설 종사자의 정신장애인에 대한 권리보장에 영향을 미치는 요인을 확인하고자 함이다. 연구대상은 정신요양시설 종사자 132명이었고, 연구도구는 권리 및 보호관련 특성, 권리인식 및 권리보장이었다. 자료분석은 SPSS/WIN 24.0 프로그램을 이용하여 기술통계, t-test, one-way ANOVA, Pearson's correlation coefficients 및 다중회귀분석으로 하였다. 연구결과로, 일반적 특성에 따른 권리보장의 차이에서는 종교에서 통계적으로 유의미한 차이를 보였다. 권리인식과 권리보장 간에는 유의미한 양의 상관관계가 있었고, 권리보장에 영향을 미치는 요인은 권리인식, 권리옹호 필요성 인식 및 종교였다. 연구결과를 바탕으로, 정신장애인 권리보장을 강화하기 위해 지속적인 교육을 통한 인식 개선과 적극적인 권리옹호활동이 필요하다. 권리보장 강화는 정신장애인 회복에 도움을 줄 것이다.
최근 카메라를 통해 입력된 영상정보로부터 실시간으로 상황을 인지하고 자율 대응할 수 있는 지능형 영상 보안 시스템의 수요가 증가함에 따라, 고성능의 얼굴 인식 시스템이 요구되고 있다. 기존의 얼굴 인식 시스템의 성능 향상을 위해서는 원거리에서 획득된 저해상도 얼굴 영상 처리를 위한 솔루션이 반드시 필요하다. 따라서 본 논문에서는 실시간 감시가 요구되는 지능형 영상 보안 시스템의 얼굴 인식 성능 향상을 위한 저해상도 얼굴 영상 복원 알고리즘을 하드웨어로 구현하였다. 저해상도 얼굴 영상 복원 방법으로는 학습 기반의 초해상도 알고리즘을 사용한다. 해당 알고리즘은 먼저 고해상도 영상으로 구성된 학습 집합에서 주성분 분석(PCA)을 활용하여 복원에 필요한 사전 정보들을 추출하고, 저해상도 영상과의 관계를 모델링하여 가장 적합한 고해상도 얼굴을 복원해내는 것이다. 저해상도 얼굴 영상 복원 알고리즘을 임베디드 프로세서(S3C2440A)를 사용하여 구현하였을 때, 약 25 초의 긴 연산 시간이 소요되었다. 이는 실시간으로 사람을 판별 및 인식하기 위한 지능형 영상 보안 시스템의 구축에는 어려움이 있다. 이를 해결하기 위하여 얼굴 영역 초해상도의 연산을 하드웨어로 구현하고 Xilinx Virtex-4를 이용하여 검증하였다. 약 9MB의 학습 데이터를 사용하였으며, 100 MHz에서 약 30 fps의 속도로 연산이 가능하다. 이러한 학습 기반의 얼굴 영역 초해상도 알고리즘을 단일 하드웨어 IP로 설계함으로써 임베디드 환경에서의 실시간 처리가 가능할 뿐 만 아니라 기존의 다양한 얼굴 검출 시스템과의 통합이 용이하여 얼굴 인식 솔루션을 제공할 수 있을 것으로 판단된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.