• 제목/요약/키워드: Recognition Enhancement

검색결과 362건 처리시간 0.025초

Obstacle Modeling for Environment Recognition of Mobile Robots Using Growing Neural Gas Network

  • Kim, Min-Young;Hyungsuck Cho;Kim, Jae-Hoon
    • International Journal of Control, Automation, and Systems
    • /
    • 제1권1호
    • /
    • pp.134-141
    • /
    • 2003
  • A major research issue associated with service robots is the creation of an environment recognition system for mobile robot navigation that is robust and efficient on various environment situations. In recent years, intelligent autonomous mobile robots have received much attention as the types of service robots for serving people and industrial robots for replacing human. To help people, robots must be able to sense and recognize three dimensional space where they live or work. In this paper, we propose a three dimensional environmental modeling method based on an edge enhancement technique using a planar fitting method and a neural network technique called "Growing Neural Gas Network." Input data pre-processing provides probabilistic density to the input data of the neural network, and the neural network generates a graphical structure that reflects the topology of the input space. Using these methods, robot's surroundings are autonomously clustered into isolated objects and modeled as polygon patches with the user-selected resolution. Through a series of simulations and experiments, the proposed method is tested to recognize the environments surrounding the robot. From the experimental results, the usefulness and robustness of the proposed method are investigated and discussed in detail.in detail.

주 요소와 독립 요소 분석의 통합에 의한 얼굴 인식 (Face Recognition By Combining PCA and ICA)

  • 류재흥;김강철;임창균
    • 한국정보통신학회논문지
    • /
    • 제10권4호
    • /
    • pp.687-692
    • /
    • 2006
  • 기존의 독립 요소 방법에 의한 얼굴인식에서는 주 요소 해석법으로 고유치 크기에 의해 특징을 추출하고 감소된 차원에서 특징 개선을 위한 독립 요소 해석법의 학습을 수행한다. 제거된 특징 공간 내에 필요한 요소가 있는 경우를 고려하지 못한 것이다. 새로운 방법은 독립 요소 해석에 의한 학습을 먼저 시행하고 분리된 데이터를 4차 중심 모멘트에 의한 축적 계수(cumulant)인 커토시스(kurtosis)의 절대값 크기에 의하여 특징을 추출한다. 하지만 독립 요소 방법은 효과적으로 노이즈를 제거하지 못한다. 두 방법의 결합효과는 주 요소 해석법을 노이즈 필터로 사용 할 때 극대화 될 수 있다. 즉 주 요소 해석법을 백색화와 노이즈 필터로 하고 독립 요소 해석법을 특징 추출 방법으로 사용하는 것이다. 실험 결과는 새로운 방법론이 기존의 방법론보다 우수함을 보여준다.

척추 자기 공명 영상에서 특징 벡터에 기반 한 디스크 질환의 자동 인식 (Automatic Disk Disease Recognition based on Feature Vector in T-L Spine Magnetic Resonance Image)

  • 홍재성;이성기
    • 대한의용생체공학회:의공학회지
    • /
    • 제19권3호
    • /
    • pp.233-242
    • /
    • 1998
  • 본 논문에서는 척추 자기공명영상에 대하여 자동적으로 질환에 관련된 특징 벡터들을 추출하고 디스크 질환을 인식하는 방법을 제안하였다. 척추 자기공명영상은 절단면에 따라 시상 단면 영상과 축 단면 영상으로 나누어 진다. 두가지 영상에서 질환에 관련된 특징 벡터를 추출하여 질환의 유무와 종류를 인식하는데 사용하였다. 시상 단면 영상에서는 각 부위에 해당하는 영역의 동질성을 이용하여 디스크 부분을 추출한 후 영역레이블링 과정을 통해 전체적인 크기와 돌출 정도를 구해서 질환을 나타내는 특징으로 이용하였다. 축 단면 영상에서는 템플릿 정합을 이용하여 디스크 영역을 찾고 경계선을 추출하기 위해 세기와 방향성을 고려한 연산자를 사용했다. 경계선의 모양을 분석해서 디스크 돌출 정도에 관한 수치를 얻었다. 이렇게 얻은 특징벡터들은 유사한 질환을 가진 환자의 영상을 찾기 위한 의료 영상 데이터 베이스에 사용될 수 있으며, 많은 양의 영상에서 질환이 나타나 있는 것을 일차적으로 선별하여 전문의에게 제공하는데 이용될 수 있을 것으로 예상한다.

  • PDF

An Adaptive Utterance Verification Framework Using Minimum Verification Error Training

  • Shin, Sung-Hwan;Jung, Ho-Young;Juang, Biing-Hwang
    • ETRI Journal
    • /
    • 제33권3호
    • /
    • pp.423-433
    • /
    • 2011
  • This paper introduces an adaptive and integrated utterance verification (UV) framework using minimum verification error (MVE) training as a new set of solutions suitable for real applications. UV is traditionally considered an add-on procedure to automatic speech recognition (ASR) and thus treated separately from the ASR system model design. This traditional two-stage approach often fails to cope with a wide range of variations, such as a new speaker or a new environment which is not matched with the original speaker population or the original acoustic environment that the ASR system is trained on. In this paper, we propose an integrated solution to enhance the overall UV system performance in such real applications. The integration is accomplished by adapting and merging the target model for UV with the acoustic model for ASR based on the common MVE principle at each iteration in the recognition stage. The proposed iterative procedure for UV model adaptation also involves revision of the data segmentation and the decoded hypotheses. Under this new framework, remarkable enhancement in not only recognition performance, but also verification performance has been obtained.

번호판 정규화에 의한 인식 성능 향상 기법 (Recognition Performance Enhancement by License Plate Normalization)

  • 김도현;강민경;차의영
    • 한국정보통신학회논문지
    • /
    • 제12권7호
    • /
    • pp.1278-1290
    • /
    • 2008
  • 본 논문은 자동차 번호판 인식 시스템의 전반적인 성능을 향상시키기 위한 전처리 방법과 신경회로망을 이용한 문자 인식기를 제안한다. 먼저 자동차 번호판 영상에서 번호판의 외곽 직선을 가상 직선 매칭에 의해 검출하고 검출된 직선의 교점을 구하여 4개의 외곽 꼭지점을 구한다. 4개의 꼭지점 좌표에 의해 양선형 변환으로 직사각형 모양의 번호판 영상으로 정규화한다. 정규화된 번호판 영상으로부터 문자를 추출한 뒤 Delta-bar-delta 알고리즘에 의해 학습된 신경 회로망 기반 인식기로 번호판을 인식한다. 다양한 환경에서 획득된 자동차 번호판 영상을 대상으로 실험한 결과 제안된 번호판 이미지의 정규화에 의해 인식 성능이 16%까지 향상됨을 확인하였다.

딥러닝 기반의 PCB 부품 문자인식을 위한 코어 셋 구성 (Coreset Construction for Character Recognition of PCB Components Based on Deep Learning)

  • 강수명;이준재
    • 한국멀티미디어학회논문지
    • /
    • 제24권3호
    • /
    • pp.382-395
    • /
    • 2021
  • In this study, character recognition using deep learning is performed among the various defects in the PCB, the purpose of which is to check whether the printed characters are printed correctly on top of components, or the incorrect parts are attached. Generally, character recognition may be perceived as not a difficult problem when considering MNIST, but the printed letters on the PCB component data are difficult to collect, and have very high redundancy. So if a deep learning model is trained with original data without any preprocessing, it can lead to over fitting problems. Therefore, this study aims to reduce the redundancy to the smallest dataset that can represent large amounts of data collected in limited production sites, and to create datasets through data enhancement to train a flexible deep learning model can be used in various production sites. Moreover, ResNet model verifies to determine which combination of datasets is the most effective. This study discusses how to reduce and augment data that is constantly occurring in real PCB production lines, and discusses how to select coresets to learn and apply deep learning models in real sites.

주파수 변이를 이용한 Parallel Model Combination 모델 적응에 기반한 잡음에 강한 음성인식 (Noise Robust Speech Recognition Based on Parallel Model Combination Adaptation Using Frequency-Variant)

  • 최숙남;정현열
    • 한국음향학회지
    • /
    • 제32권3호
    • /
    • pp.252-261
    • /
    • 2013
  • 일반적인 음성인식 시스템은 조용한 인식 환경에서는 높은 인식성능을 나타내지만 잡음이 존재하는 실제 환경에서는 그 성능이 급격히 저하한다. 본 논문에서는 다양한 잡음환경에서도 강인한 음성인식기를 구현하기 위하여, 주파수의 변이도를 이용하여 음성인식을 위한 환경 정보를 얻고 이를 음성 인식을 위한 모델 개선에 적용하여 성능향상을 도모하는 환경정보 지식에 기반한 주파수 변이 적응 PMC (Parallel Model Combination adaptation using frequency-variant based on environment - awareness : FV-PMC) 방법을 제안한다. 이 방법은 미리 분류된 각 잡음 군간의 평균 주파수 변이도를 미리 계산하여 임계치로 설정하고 미지의 잡음이 포함된 음성이 입력되면 각 잡음 군과의 주파수 변이도를 다시 계산하여 해당 잡음군의 임계치 보다 높을 경우 그 잡음 군의 잡음이 포함된 음성으로 간주하여 이 잡음 군이 포함된 음성을 이용하여 생성된 인식모델을 이용하여 음성인식을 수행한다. 제안한 FV-PMC 방법을 이용하여 잡음을 분류 하였을 경우 평균 분류 정확도는 56%를 보였고 이를 이용해 음성인식 실험을 실시한 결과 Set A의 평균인식률은 79.05%, Set B의 평균인식률은 79.43%, Set C의 평균인식률은 83.37%로 나타났다. 전체 평균인식률 80.62%로 기존의 깨끗한 모델을 이용한 PMC 인식률 74.93% 보다 5.69% 향상된 결과를 보여 제안한 방법의 유효성을 확인할 수 있었다.

속눈썹 추출 방법을 이용한 홍채 인식 성능 향상 연구 (A Study on Performance Enhancement for Iris Recognition by Eyelash Detection)

  • 강병준;박강령
    • 정보처리학회논문지B
    • /
    • 제12B권3호
    • /
    • pp.233-238
    • /
    • 2005
  • 고 수준의 정보 보안이 요구되는 분야에서 최근 많이 사용되고 있는 홍채 인식 알고리즘에서는 홍채 근육의 무의 패턴을 이용하여 고유한 홍채 코드를 생성하고, 이를 이용하여 동일인인지 여부를 판별하게 된다. 그런데 홍채 영역의 위치에 다른 불필요한 정보가 포함되어 홍채 영역을 가리게 된다면, 홍채 인식에서 오류가 발생할 확률도 증가하게 된다. 그 불필요한 정보 중에 대표적인 것이 속눈썹이다. 홍채 영역을 덮고 있는 속눈썹을 홍채 패턴으로 취급하여 인식에 그대로 사용할 경우, 속눈썹의 위치가 변경되게 되면 그에 따라 홍채 코드 역시 바뀌게 되어 인식 오류도 증가하게 될 것이다. 이러한 문제점을 해결하기 위하여 이 논문에서는 마스크 기반으로 속눈썹을 추출함으로써 정확한 홍채 영역을 검출하고, 이를 이용하여 홍채 인식의 성능을 향상시키는 방법을 제안하고자 한다. 실험 결과 본 논문에서 제안하는 속눈썹 추출 알고리즘을 사용하지 않았을 때의 인식성능(EER)보다 제안하는 알고리즘을 사용했을 때의 인식 성능이 $0.18\%$ 향상되는 결과를 얻었다.

정신요양시설 종사자의 정신장애인에 대한 권리보장 영향요인 (Factors Influencing Mental Care Facility Workers' Rights Guarantee for People with Mental Disorder)

  • 김경미;이정숙
    • 한국융합학회논문지
    • /
    • 제12권6호
    • /
    • pp.241-248
    • /
    • 2021
  • 본 연구의 목적은 정신요양시설 종사자의 정신장애인에 대한 권리보장에 영향을 미치는 요인을 확인하고자 함이다. 연구대상은 정신요양시설 종사자 132명이었고, 연구도구는 권리 및 보호관련 특성, 권리인식 및 권리보장이었다. 자료분석은 SPSS/WIN 24.0 프로그램을 이용하여 기술통계, t-test, one-way ANOVA, Pearson's correlation coefficients 및 다중회귀분석으로 하였다. 연구결과로, 일반적 특성에 따른 권리보장의 차이에서는 종교에서 통계적으로 유의미한 차이를 보였다. 권리인식과 권리보장 간에는 유의미한 양의 상관관계가 있었고, 권리보장에 영향을 미치는 요인은 권리인식, 권리옹호 필요성 인식 및 종교였다. 연구결과를 바탕으로, 정신장애인 권리보장을 강화하기 위해 지속적인 교육을 통한 인식 개선과 적극적인 권리옹호활동이 필요하다. 권리보장 강화는 정신장애인 회복에 도움을 줄 것이다.

지능형 영상 보안 시스템의 얼굴 인식 성능 향상을 위한 얼굴 영역 초해상도 하드웨어 설계 (Hardware Design of Super Resolution on Human Faces for Improving Face Recognition Performance of Intelligent Video Surveillance Systems)

  • 김초롱;정용진
    • 대한전자공학회논문지SD
    • /
    • 제48권9호
    • /
    • pp.22-30
    • /
    • 2011
  • 최근 카메라를 통해 입력된 영상정보로부터 실시간으로 상황을 인지하고 자율 대응할 수 있는 지능형 영상 보안 시스템의 수요가 증가함에 따라, 고성능의 얼굴 인식 시스템이 요구되고 있다. 기존의 얼굴 인식 시스템의 성능 향상을 위해서는 원거리에서 획득된 저해상도 얼굴 영상 처리를 위한 솔루션이 반드시 필요하다. 따라서 본 논문에서는 실시간 감시가 요구되는 지능형 영상 보안 시스템의 얼굴 인식 성능 향상을 위한 저해상도 얼굴 영상 복원 알고리즘을 하드웨어로 구현하였다. 저해상도 얼굴 영상 복원 방법으로는 학습 기반의 초해상도 알고리즘을 사용한다. 해당 알고리즘은 먼저 고해상도 영상으로 구성된 학습 집합에서 주성분 분석(PCA)을 활용하여 복원에 필요한 사전 정보들을 추출하고, 저해상도 영상과의 관계를 모델링하여 가장 적합한 고해상도 얼굴을 복원해내는 것이다. 저해상도 얼굴 영상 복원 알고리즘을 임베디드 프로세서(S3C2440A)를 사용하여 구현하였을 때, 약 25 초의 긴 연산 시간이 소요되었다. 이는 실시간으로 사람을 판별 및 인식하기 위한 지능형 영상 보안 시스템의 구축에는 어려움이 있다. 이를 해결하기 위하여 얼굴 영역 초해상도의 연산을 하드웨어로 구현하고 Xilinx Virtex-4를 이용하여 검증하였다. 약 9MB의 학습 데이터를 사용하였으며, 100 MHz에서 약 30 fps의 속도로 연산이 가능하다. 이러한 학습 기반의 얼굴 영역 초해상도 알고리즘을 단일 하드웨어 IP로 설계함으로써 임베디드 환경에서의 실시간 처리가 가능할 뿐 만 아니라 기존의 다양한 얼굴 검출 시스템과의 통합이 용이하여 얼굴 인식 솔루션을 제공할 수 있을 것으로 판단된다.