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Obstacle Modeling for Environment Recognition of Mobile Robots
Using Growing Neural Gas Network

Min Young Kim, Hyungsuck Cho, and Jae-hoon Kim

Abstract: A major research issue associated with service robots is the creation of an environ-
ment recognition systemn for mobile robot navigation that is robust and efficient on various envi-
ronment situations. In recent years, intelligent autonomous mobile robots have received much
attention as the types of service robots for serving people and industrial robots for replacing hu-
man. To help people, robots must be able to sense and recognize three dimensional space where
they live or work. In this paper, we propose a three dimensional environmental modeling
method based on an edge enhancement technique using a planar fitting method and a neural
network technique called “Growing Neural Gas Network.” Input data pre-processing provides
probabilistic density to the input data of the neural network, and the neural network generates a
graphical structure that reflects the topology of the input space. Using these methods, robot’s
surroundings are autonomously clustered into isolated objects and modeled as polygon patches
with the user-selected resolution. Through a series of simulations and experiments, the proposed
method is tested to recognize the environments surrounding the robot. From the experimental
results, the usefulness and robustness of the proposed method are investigated and discussed in
detail.

Keywords: Three dimensional environment recognition, polygon modeling, mobile robot, grow-

ing neural gas network.

1. INTRODUCTION

Intelligent autonomous mobile robots used as ser-
vice robots or industrial robots have been the subject
of great interest in recent years. This type of robotic
systems is often used so that it can execute routine
tasks autonomously in partially known environments.
To complete the task successfuily, the robots need to
recognize the navigation environment without human
intervention; hence, this environment must be mod-
eled. Many researchers have tackled and studied the
modeling of navigation environment from several dif-
ferent aspects of the applications [1-4]. Previous ap-
proaches to tackle this problemcan be divided into
three categories: the geometric primitive based
method, the polygon modeling based method, and the
grid modeling based method. As an application using
the first method, Feddema and Little [1] constructed
the world model via range data fitting by using geo-
metric primitives. In this research, they dealt with the
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object modeling problem with the assumption that the
range data can be pre-segmented by operator. As an-
other example, the world modeling technique intro-
duced in [2] is based on the autonomous segmenta-
tion of the range image and the manual surface fitting
using geometric primitives. The acquired range image
is segmented to group a set of range points into sur-
faces, and then the segmented surface patch is fit to a
user selected quadric or plane. As one of the second
method applications, Barry and Jones [3] utilized the
conventional polygon modeling technique of the
computer graphics for building an accurate world
model of robot workspace. Even with noisy data fil-
tering, manual data editing, and less important poly-
gon elimination, around 100,000 polygons are re-
quired for displaying the recognized environment.
Moravec [4] proposed the 3D evidence grid method,
which is classified into the third category for robot
spatial perception. The 6X6X2m space is modeled
as a grid 256 cells wide by 256 cells deep by 64 cells
high. Certainly, this is a simple environment represen-
tation method for robot navigation, but is not good for
environment recognition in view of information com-
pression. As mentioned above, the previous ap-
proaches are not adequate and efficient for the appli-
cations related to autonomous environment recogni-
tion.

In this paper, we propose a method for modeling
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the 3D shape of the indoor environments and recog-
nizing the cluttered obstacles, using neural network
called the growing neural gas and edge enhancement
technique of the voxel image. The purpose of the
growing neural gas model is to generate a graph
structure that reflects the topology of the input data
(topology learning). This graph has a dimension that
varies with the dimension of the input data. The re-
sulting structure can be used to identify and model
clusters in the input data. The nodes in the structure
can be used as a codebook for vector quantization of
the input data. Through these methods, the 3D envi-
ronments around the robot can be autonomously seg-
mented into the isolated objects and modeled as poly-
gons with the user-selected resolution.

The organization of the paper is structured as fol-
lows: In Section 2, we address the environmental rec-
ognition problem of the mobile robot, and propose a
recognition strategy for the intelligent mobile robot
system. In Section 3, a neural network structure for
the obstacle classification and modeling is proposed,
the structure which is known as the growing neural
gas network. The principle and characteristics of this
network are described, and an edge enhancement
technique is applied to modify this network. Finally,
in Section 4, a series of experimental tests are per-
formed to verify the efficiency and the effectiveness
of the proposed environmental recognition method.
The experimental results are discussed in some detail.

2. MOBILE ROBOT AND ENVIRONMENTAL
RECOGNITION

For autonomous mobile robot navigation, mobile
robots must have intelligence that can sense and rec-
ognize its navigation environment.

2.1. Mobile robot for industrial applications

As an example of the autonomous mobile robot for
industrial application. Fig. 1 shows an intelligent mo-
bile welding robot used for ship construction. For

1. welding torch
3. welding robot
4. mobile platform

2. visual sensor system
5. mechanism for welding
robot lifting

Fig. 1. The mobile welding robot.

autonomous mobile robot navigation, the functions of
the environmental sensing and recognition are essen-
tial to it. This robot can sense the welding task envi-
ronment and track the weld seam by robot hand
mounted laser visual sensor [5]. By using the laser
scanning technique, this robot can measure the object
distances of its surrounding three-dimensionally. In
this work, it is assumed that the navigation space is
one of the partially known environments with some
CAD information that is given prior to its navigation.
In this space, the robot must navigate autonomously
and safely through the careful sensing and recognition
on the environment.

2.2. Environment sensing and representation

To fulfill the environment recognition task and the
welding task, the mobile welding robot is equipped
with a sensor system to be able to track the welding
seam and to recognize the partially structured envi-
ronments. In this case of the seam tracking, the opti-
cal triangulation method using the structured light has
been widely used [6-8]. A variety of machine vision
techniques, such as controlled illumination, stereos-
copy, photometric stereo, and shape-from-shading
have been developed for the determination of 3D
scene geometric information from 2D images. How-
ever, because of the nature of the manufacturing or
welding environment and the type of features of in-
terest, structured lighting is most appropriate and has
been widely applied in the sensing tasks mentioned
above. In this work, the structured lighting was util-
ized for environmental sensing. The sensor system
consists of two lipstick cameras and three laser diodes
{5,9]. Using this sensor system and the scanning
technique, the 3D range data on the environment sur-
rounding the robot can be obtained. First of all, it
must be represented in an efficient data structure that
the robot can understand. Many different environment
representations can be used according to the type of
task to be performed, the kind of environment, and
the type of sensor used. The most significant types of
representations can be classified into cell decomposi-
tion models, geometrical models and topological
models [10]. In this work, we select the cell decom-
position modeling technique as an environment repre-
sentation method. This technique is not able to ex-
actly represent an object to be modeled. However, it
has an advantage that any object can be represented in
a simple way. Fig. 2 shows the cubic cells with
100x100x100 size for 3D environment models. The
one cubic cell (voxel) has 10x10x10mm volumetric
size. This volumetric size was determined on consid-
ering that the laser vision sensor mounted on the ro-
bot hand has the 10mm resolution at maximum range

[9].
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Fig. 4. Obstacle extraction from 3D measurement.
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Fig. 5. Obstacle clustering from extracted obstacle
data.

2.3. Environmental recognition

On the basis of the measured data, the intelligent
robot must be able to model and recognize the envi-
ronments. In this study, the proposed recognition
strategy is as follows [9]: When the robot navigates
the partially known space as shown in Fig. 2, it can
extract the obstacle data from the acquired environ-
ment data. This task is accomplished by comparing
the measured environment data with the known CAD
data [11]. Fig. 3 shows the concept of extracting ob-

stacle data from 3D measurement data including ob-
stacle and CAD information simultaneously. First,
through the self-localization, the robot is localized on
the world coordinate frame. Using the robot localiza-
tion data, the local sensing data on the robot coordi-
nate frame is transformed into the global map repre-
sented on the world coordinate frame. Then, the CAD
data and measurement data represented on the same
coordinate frame are compared in view of the geo-
metrical distance, and the obstacle data of not existing
on the CAD data can be extracted from the measure-
ment data. After the obstacle data extraction, the ob-
tained data must be clustered into several groups as
shown in Fig. 4. Each group, which represents a lump
of an obstacle, is modeled by the geometric primitives,
the triangular patch or the rectangular evidence grid.
From the modeling of the clustered data group, the
posture and shape information of each object can be
obtained. In next section, we deal with problems of
clustering and modeling by using the extracted obsta-
cle data.

3. OBSTACLE CLASSIFICATION AND
MODELING

In most conventional object recognition systems,
the clustering procedure and the modeling procedure
are divided into parts. In this section, we propose a
new method that can efficiently integrate the two pro-
cedures. The proposed method consists of a neural
network part and an edge enhancement part of the 3D
image.

3.1. Growing neural gas network

The purpose of the growing neural gas model is to
generate a graph structure that reflects the topology of
the input data (topology learning). This graph has a
dimension that varies with the dimension of the input
data. The resulting structure can be used to identify
and model clusters in the input data. The nodes in the
structure can be used as a codebook for vector quanti-
zation of the input data. The detail description of this
method is found in [12]. The networks consists of the
followings: 1) a set A of nodes. Each node unit, ¢ € A
has a reference vector, w, € R", and a local error vari-
able, E. 2) a set C of connections among pairs of
nodes. These connections are not weighted, and their
purpose is the definition of topological structure of
the input data space. Each connection has a variable,
age, which denotes the freshness level of it. Fig. 6
shows the structure of the growing neural gas net-
work. There is a number of n-dimensional input sig-
nal &= (xy, x,, ... , x,) obeying the probability density
function P(&).

The algorithms for learning the input data space us-
ing this neural network are summarized as follows:
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Fig. 6. Structure of the growing neural gas network.

1) Start with a set A of two units a and b at random
positions w,= (Wai, Wa2, +.. », Wan) and wy= (Wp1, W,
e, W) in R

A={a, b}. (D

Initialize the connection set C to contain a connection
between a and b, and set the age of this connection to
7ero:

C ={(a, b)}’ age, » =0. (2)

ii) Generate an input signal & according to the
probability density function, P(¢) .

iii) Find the nearest node s, and the second-nearest
node s2 for the input signal (s, and s, € A). Here, the
output variable yi of each node is utilized to find a
node with maximum similarity to the input data:

Vi =wi‘§=[wi| Wy o w1l xg xn]T' &)

iv) If any connection between them does not al-
ready exist in C, insert the connection to C:

C =CU{(s,,5,)}. )
In any case, set the age of the connection to zero:
s = 0- 5)

v) Add the squared distance between the input sig-
nal and the nearest node in input space to the local
error variable:

age

AE, =|w, -¢[". ©)

vi) Move s, and its direct topological neighbors
towards & by fractions &, and &,, respectively, of the
total distance:

Aw, =g,(E-w,). (7N

Aw, =g (E-w,) Vie N,. ®)

where N, denotes the set of direct topological
neighbor of c.

vii) Increment the age of all connections emanating
from s, :

age, ;, =age, ;,+1 Vie N.s, . ®

viii) Remove connections with an age larger than
the predefined value, age,..,. If this procedure gener-
ates nodes having no emanating connections, remove
them as well.

ix) If the number of input signals generated so far
is an integer multiple of a parameter A, insert a new
node as follows:

Determine the node ¢, with the maximum accumu-
lated error among the whole nodes.

E 2E, Vee A. (10

Insert a new unit » between ¢ and its neighbor node
f with the largest error variable, and interpolate the
reference vector, w,, to locate between w, and w;:

A=AU{. (11)

w,=05-(w,—w,). (12)

Insert connections connecting the new node r with
nodes ¢ and f, and remove the original connection be-
tween g and f':

C=CcU{(r.gr. 1)} (13)
C=C—{(q,f)}. (14)

Decrease the error variables of ¢ and f:

AE, =-a-E,, AE, =-a-E,. (15)

Initialize the error variable of r from g and f:
E, =05(E,+E,). (16)
x) Decrease the error variables of all nodes:
AE, =-f-E. Vce A. (17)

xi) If a stopping criterion to end is not satisfied, go
to step ii.

Fig. 7 shows an example of topological learning
using this method. The simulation result shows that
the topology of the input data is well preserved in
output represented by the network configuration.
Especially, as shown in Fig. 7 c), the network charac-
teristic that the distribution of nodes follows the input
data distribution is applied to the modeling technique
in the next section.

3.2. Application to the environmental recognition

Through this method, the 3D environments around
the robot can be autonomously segmented into the
isolated objects and modeled as the polygons repre-
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sented as nodes and node connections with the user-
selected resolution simultaneously. The extracted ob-
stacle voxel data with the probabilistic density are
used as the network input, and the network output
consists of the nodes and the connection between
nodes. A method of endowing input data with a prob-
abilistic density is described in the next section,
which is a 3D image processing technique in voxel
space. The role of the probabilistic density is to give
more chances that the input data is sampled during
learning process of the neural network to the data at
the region near to object edge. As mentioned in the
previous section, input data with the high probabilis-
tic density tends to attract the nodes intensively. The
well-positioned nodes near the edge can represent the
object better because more nodes are necessary for de-
creasing the modeling error at curved region or edge
region to compare with planar region. The proposed
obstacle recognition procedure is shown in Fig. 8.

3.3. Endowment of the probabilistic density to input
data using 3D image processing technique

Every input data that represents obstacle may have a
constant probabilistic density value. The network char-
acteristic shown in Section 3.1 gives an idea for a de-
tailed object modeling. Similar to the pattern recogni-
tion problem in 2D image, edge information in 3D
space can be an important cue for the efficient object
modeling. We utilize the network tendency in which
nodes get together at the high probabilistic density re-
gion. The detailed procedure for the probabilistic den-
sity determination are summarized as follows:

i) Select the input signal &in R" .

ii) Select a set of the neighbor points, N(£), among
the input signal space:

N(&) = {N(E,N, (), N, (D)} (18)

where m denotes the number of neighbor points.

iii) Using the input data, N(¢), and the least square
error method, find a plane equation fitting the input
data with surface normal vector, u, and minimum dis-
tance, v, from the origin to the plane of the world co-
ordinate frame:

u'x+v=0. 19)

where x is a 3D vector.
Calculate the planar fitting error Eplane({) and set it
as the probabilistic density of the input signal & P(&):

E,,,,,.e(é)=%i(u’"N,-(§)+v>2 = P(&) . (20)
i=l

Fig. 9 shows the probabilistic density endowing proce-
dure on an example. As shown in this figure, the algo-
rithms give the planar region the low probabilistic den-
sity, the curved region the middle probabilistic density,
and the edge region the high probabilistic density,

a) simulation example of input data distribution : P(&).

b) nodes and connections representing the distribu-
tion(Pleft(&) of left side part=Pright(&) of right
side part).

¢) nodes and connections representing‘the' distribu-
tion(Pleft(£) of left side part<Pright($) of right
side part).

Fig. 7. Topological learning by growing neural gas

network.

Measurement CAD

Sensing & CAD matching process ]

Obstacle Voxel data

stic Density Determination

Probabilistic Density of input data
High probabilistic density at edge)

H

Recognized obstacle

Fig. 8. Obstacle recognition procedure.

| Input data point: & |

E@=L1¥ (N &+ o) = P&

m

Fig. 9. Probabilistic density endowing procedure.

respectively. According to the probabilistic density value,
the probabilistic chance that the signal is sampled can be
varied during the neural network learning procedure.
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4. EXPERIMENTS: ENVIRONMENT
MODELING

In this section, the proposed environment modeling
technique is verified through a series of experiments.
Fig. 10 shows an environment composed of a cylinder,
a cubic, and several flat plates for the recognition ex-
periments. The information on the structure of flat
plates is previously given as the CAD information, and
the others are obstacles. Using the laser vision sensor
described in Section 2.2, the sensing on this environ-
ment was performed. A voxel representation of the

Fig. 10. Environment for the modeling experiment.

World coord.

a) voxel representation of the measured data.

z

Ly

World coord.

b) the priori given CAD data.

Fig. 11. 3D measurements on the scene shown in Fig.
10 and the priori given CAD data.

Fig. 12. Obstacle extraction by comparing CAD data
and measurement data (about 3200 voxel
points).

acquired 3D measurements on the scene is shown in
Fig. 11 a), and a priori given CAD information is in
Fig. 11 b). Fig. 12 shows the obstacle extraction result
by comparing CAD data and measurement data on
the world coordinate frame. The detail description on
this procedure is in [11], which is a 3D image proc-
essing technique. Finally, the proposed modeling
method is applied to the extracted obstacle data
shown in Fig. 12. The algorithmic parameters of the
neural network for these experiments were selected as
follows: A=600, &=0.05, g=20.0006, age,,.= 88,
and = 0.0005. The obstacle clustering and modeling
results by GNG network are represented with varia-
tions of maximum node number in Fig. 13. The varia-
tion of the number of nodes is limited to 50, 100, 150,
200, and 250, respectively. As expected, a large num-
ber of nodes lead to more accurate object modeling.
The results show that two clusters well reflect the in-
put data distribution with the nodes and connections
adapted on the input data space. Using the connection
information, we can extract each obstacle from the
modeling result. Table 1 represents the modeling error
of the results with variations of the number of nodes.
Input data represented in Fig. 12 was about 3200
voxel point data. By using the proposed modeling
technique, the input data space can be compressed
into 250 nodes and their connections with 3.2mm av-
erage modeling error and 2.6mm standard deviation.
The modeling error is defined as the normal distance
between the input data and the related polygon patch.

5. CONCLUSIONS

For autonomous mobile robot navigation, mobile ro-
bots must be equipped with functions that allow them
to sense and recognize their environment with intelli-
gence. In this paper, we proposed a three dimensional
environment modeling technique using Growing Neu-
ral Gas Network and edge enhancement technique.
Comparing with the conventional environmental
modeling methods, the proposed method efficiently
integrates the segmentation of the 3D obstacle data
and the modeling of each obstacle. The role of this
neural network is to generate a graphical structure
that reflects the topology of the input space and to
cluster the obstacle data into isolated objects.
Through this method, the 3D surroundings around the
robot were autonomously segmented into isolated ob-
jects and modeled as polygon patches with the user-
selected resolution. Though the performed experi-
ments are not much general, the experimental results
show the possibility of the proposed method for the
environment modeling application of mobile robots.
Presently, we are studying the recognition tasks for
the objects with more complex shapes. The devel-
opment of endowing this robotic system with intelli-
gence is still under way. Future studies should
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investigate the following issues:

Robust and efficient environment recognition
method using the neural network and the geometric
primitives. Autonomous navigation and task execu-
tion of the mobile robot using recognized results.

e) In case of 250 nodes.
Fig. 13. Obstacle clustering and modeling with varia-
tions of the number of nodes.

Table 1. Modeling error analysis with variations of
the number of nodes.

Node Modeling Standard deviation
number error (mm) (mm)
50 6.8 16.30
100 4.6 13.84
150 3.9 12.98
200 3.8 +2.73
250 3.7 12.65
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