• Title/Summary/Keyword: Reclaimed Asphalt

Search Result 40, Processing Time 0.021 seconds

A Study on Mechanical Performance Evaluation and Economic Analysis by Reclaimed Hot Asphalt Pavement (순환 가열 아스팔트의 용도별 기계적성능 평가 및 경제성 분석 연구)

  • Mun, Sung Ho;Ka, Hyun Gil;Lee, Ci Won;Park, Yong Boo
    • Land and Housing Review
    • /
    • v.10 no.4
    • /
    • pp.51-59
    • /
    • 2019
  • The government is encouraging the notice of obligatory reclaimed asphalt as a result of the economic and social positioning of green growth to reduce the amount of waste resources and to solve natural resource problems by recycling continuously generated waste resources. However, it is necessary to develop application guideline for each application to apply reclaimed asphalt to the site because quality control of the reclaimed asphalt is difficult and the specifications are ambiguous as well. Therefore, in this study, the mix design, quality test, performance test, and finite element analysis about reclaimed Asphalt Pavement were conducted to develop application guideline for reclaimed hot asphalt. The mix design was carried out for the comparative general hot mix asphalt mixture, the reclaimed hot mix asphalt mixture using the additive, and the reclaimed hot mix asphalt mixture without the additive. Indirect tensile strength and tensile strength ratio tests were used to characterize the reclaimed hot mix asphalt mixture. Using the results of dynamic modulus test and FWD test for KPRP analysis and finite element analysis, the performance life was evaluated for general pavement and pavement using recycled aggregate. Finally, the life cycle cost analysis was used to compare and analyze the economics of reclaimed asphalt concrete pavement.

A Study on Chemical Analysis of Reclaimed Asphalts and Rejuvenators for Property Restoration (성상복원을 위한 폐아스팔트의 화학적 분석 및 재생첨가제 연구)

  • Jung, Du-Hwoe
    • International Journal of Highway Engineering
    • /
    • v.3 no.1 s.7
    • /
    • pp.177-184
    • /
    • 2001
  • A recycling agent has been manufactured on the basis of the chemical composition of reclaimed asphalt binders and virgin asphalt binders. The chemical compositions of reclaimed asphalt binders extracted from reclaimed asphalt pavements have been analyzed according to the ASTM method and the results were compared to those of virgin asphalt binder AP-3. Reclaimed asphalt binders have shown that asphaltenes was increased whereas saturates, naphthene aromatics, and polar aromatics fractions were decreased. A recycling agent made of aromatic compounds, in which its chemical composition is similar to the aromatics fraction in asphalt binders, has been produced to reduce the amount of asphaltenes in reclaimed asphalt hinders. The evaluation of the recycling agent produced was performed by testing ductility, rolling and ball softening point, penetration at $25^{\circ}C$ and viscosity at $60^{\circ}C$. It was found that, by adding the recycling agent 20% by weight to the reclaimed asphalt binders, the physical properties of reclaimed asphalt binders was recovered to the level of virgin asphalt binder AP-3.

  • PDF

A Study on the Performance Evaluation of Reclaimed Asphalt Concrete Mixture with Rejuvenator (재생첨가제를 적용한 순환 아스팔트 콘크리트 혼합물의 공용성능 평가에 관한 연구)

  • Ga, Hyun-Gil;Mun, Sung-Ho
    • Land and Housing Review
    • /
    • v.13 no.4
    • /
    • pp.125-134
    • /
    • 2022
  • Reclaimed aggregates through waste asphalt are produced and utilized for waste resource utilization. This study conducts quality tests and performance evaluations for mixtures with Rejuvenator applied to reclaimed asphalt concrete. Through quality testing and performance evaluation, the study investigates whether there is any problem in using reclaimed asphalt concrete by replacing general hox mix asphalt. As a result, the values of ordinary hot mix asphalt are similar to those of reclaimed asphalt, suggesting that the substitution does not create critical engineering issues. Using reclaimed asphalt concrete has the advantages of increasing economic efficiency and utilizing waste resources.

An effect of Reclaimed Asphalt Concrete on the Strength Development of Concrete using Recycled-Aggregate (폐아스콘을 함유한 재생콘크리트의 강도발현 특성평가)

  • Lee Wook Jae;Seo Ki Won;Kim Hag Youn;Kim Nam Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.205-208
    • /
    • 2004
  • The purpose of this study is to recycle waste concrete and reuse reclaimed asphalt concrete as a concrete coarse aggregate. In this experiment, recycled coarse aggregate was substitute for natural crushed aggregate at the rate of 0, 30, $50\%$, and reclaimed asphalt concrete was substitute for recycled coarse aggregate at the rate of 0, 10, 20, $30\%$. According to the experimental results, as the reclaimed asphalt concrete content has influence on the properties of recycled aggregate concrete such as compressive and tensile strength, the criteria for the substitute ratio should be required to be set.

  • PDF

Effects of Mineral Powder on Performance of Warm Reclaimed Asphalt Mixture

  • Liu, Yao;Wang, Xiao-Yong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.216-217
    • /
    • 2018
  • The three kinds of tests are used to further study the effect of the amount of mineral powder in this mixture design. Firstly, comparing the relationship of the content of mineral powder and asphalt bitumen membrane thickness at different asphalt content, through film thickness to determine the range of gradation and asphalt content in laboratory tests, Grade A and Grade D, asphalt content 2.6%, 3.4% and 3.8% are set for the benchmark, then fatigue properties of the test are carried out in the established range, the result show that asphalt film thickness decreases with the addition of mineral powder. The result also show that fatigue properties of asphalt rubber mixture will reduced, when mineral powder added in, especially when the asphalt content is high.

  • PDF

A Case Study of Hot In-Place Recycling Asphalt Mixture in Korea (국내 현장가열재생아스팔트 시공 혼합물 시험평가)

  • Kwon, Sooahn;Yang, Sunglin;Lee, Jaejun;Hong, Jaecheong;Lim, Jaekyu
    • International Journal of Highway Engineering
    • /
    • v.15 no.1
    • /
    • pp.57-63
    • /
    • 2013
  • PURPOSES: This study is to investigate the Hot In-Place recycling asphalt mixture in Korea using field produced materials. METHODS: Hot In-Place reclaimed asphalt mixture was investigated to evaluate the mixture properties based on various test results such as Marshall Test, Indirect Tensile Test, TSR, and Wheel Tracking Test. These test values were compared with domestic standard specification. RESULTS: The result of the laboratory experiment indicates that the Hot In-Place Reclaimed(HIR) asphalt mixture produced at the field constrution site was satisfied all of the test criteria such as Indirect tensile test, Marshall and TSR test, and wheel tracking test. During the test, the research team found that current HIR system is required an extention of mixing time to improve quality and to reduce variation of sample to sample. Although the current HIR mixture was passed the test criteria, there is a potential capability to enhance the mixture properties as extend mixting time. CONCLUSIONS: Based on these laboratory test results, It would be concluded that domestic HIR mixture's properties were satisfied all standard specification related with evaluation of recycling asphalt mixtures. Based on this case study result, there is a chance to save construction cost and increase the usage of reclaimed asphalt concrete in the future.

Laboratory Performance Characteristics of Cold-Mixed Reclaimed Asphalt Pavement(RAP) (상온재생공법활용 회수아스팔트 혼합물의 실험적 공용특성)

  • Kim, Nak-Seok;Jo, Myoung-Hwan;Im, Jung-Soon
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.3 no.1 s.8
    • /
    • pp.133-140
    • /
    • 2003
  • The research was performed to evaluate the cracking resistance characteristics of cold-mixed reclaimed asphalt pavement (RAP) using indirect tensile strength test and fatigue tests. Indirect tensile tests were conducted to estimate the indirect tensile strength at variable temperatures($10^{\circ}C\;and\;20^{\circ}C$). Fatigue tests were also carried out using 500kgf, 400kgf, and 300kgf of dynamic loads, and the fatigue life (Nf) for each mixture was measured. Indirect tensile strength of cold-mixed reclaimed asphalt pavement was about 90% of conventional 13mm dense-graded asphalt mixture. Fatigue life of cold-mixed reclaimed asphalt mixture was 70%, 55%, 30% (for 500kgf, 400kgf, 300kgf of load level, respectively) of the conventional one.

A Study on the Properties of Modified Asphalt Mixtures Using Cold Recycling Method (상온형 재생방법을 이용한 개질 아스팔트 혼합물의 특성에 관한 실험적 연구)

  • 박승범;권혁준
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.2 no.2
    • /
    • pp.65-71
    • /
    • 2001
  • Recently the quantities of waste asphalt concrete at construction sites have increased greatly, but the maintenance and final disposal is very difficult problem. Therefore, we were faced with a worsening environmental problem brought about illegal measures. One of the most effective recycling method is cold recycling. This method will satisfy treatment and recycling of construction wastes. Also it is very important question in the preservation of environmental and natural resources. So, in this paper, we dealt cold recycling modified asphalt mixtures using emulsified asphalt to concern the effect of adding reclaimed asphalt concrete 30, 40, 50% and using SBR Latex for modified asphalt mixtures.

  • PDF

Performance Evaluation of High-RAP Asphalt Mixtures using Rapid-Setting Polymer-Modified Asphalt Emulsion (긴급보수용 개질 유화아스팔트 고비율 순환골재를 사용한 상온 아스팔트 혼합물의 성능 평가)

  • Kwon, Bong Ju;Heo, Jae Min;Han, Yong Jin;Rhee, Suk Keun
    • International Journal of Highway Engineering
    • /
    • v.17 no.2
    • /
    • pp.21-30
    • /
    • 2015
  • PURPOSES : The purpose of this study was to evaluate the performance of rapid-setting polymer-modified asphalt mixtures with a high reclaimed asphalt pavement (RAP) content. METHODS: A literature review revealed that emulsified asphalt is actively used for cold-recycled pavement. First, two types of rapid-setting polymer-modified asphalt emulsion were prepared for application to high-RAP material with no virgin material content. The quick-setting polymer-modified asphalt mixtures using two types of rapid-setting polymer-modified asphalt emulsion were subjected to the following tests: 1) Marshall stability test, 2) water immersion stability test and 3) indirect tensile strength ratio test. RESULTS AND CONCLUSIONS : Additional re-calibration of the RAP was needed for laboratory verification because the results of analyzing RAP aggregates, which were collected from different job sites, did not deviate from the normal range. The Marshall stability of each type of binder under dry conditions was good. However, the Type B mixtures with bio-additives performed better in the water immersion stability test. Moreover, the overall results of the indirect tensile strength test of RAP mixtures with Type B emulsions exceeded 0.7. Further research, consisting of lab testing and on-site application, will be performed to verify the possibility of using RAP for minimizing the closing of roadways.

Performance Evaluation of Cold Recycled Asphalt Mixtures with Asphalt Emulsion and Inorganic Additives (무시멘트 첨가제를 활용한 상온 재활용 아스팔트 혼합물의 성능 분석)

  • Park, Chang Kyu;Kim, kyungsu;Kim, Won Jae;Lee, Hyun Jong
    • International Journal of Highway Engineering
    • /
    • v.19 no.2
    • /
    • pp.137-142
    • /
    • 2017
  • PURPOSES :The objective of this study is to evaluate the performance of asphalt mixtures containing inorganic additive and a high content of reclaimed asphalt pavement (RAP). METHODS : The laboratory tests verified the superior laboratory performance of inorganic additive compared to cement, in cold recycled asphalt mixtures. To investigate the moisture susceptibility of the specimens, tensile strength ratio (TSR) tests were performed. In addition, dynamic modulus test was conducted to evaluate the performance of cold recycled asphalt mixture. RESULTS :It was determined that NaOH solution mixed with $Na_2SiO_3$ in the ratio 75:10 provides optimum performance. Compared to Type B and C counterparts, Type A mixtures consisting of an inorganic additive performed better in the Indirect tensile strength test, tensile strength ratio test, and dynamic modulus test. CONCLUSIONS : The use of inorganic additive enhances the indirect strength and dynamic modulus performance of the asphalt mixture. However, additional experiments are to be conducted to improve the reliability of the result with respect to the effect of inorganic additive.