The source of Chusan Spring water in the Ulleungdo is the precipitation in the Nari caldera basin, which permeates in the Trachitic pumice and tuff area and moves downward, outflowing at the lithologic boundary between the trachyte and Nari tuff. It is known that the discharge rate of the Chusan Spring is large enough to be used for the small hydroelectric power generation, but the exact discharge rate and hydrogeologic characteristics have not been known. The discharge rates of the Spring were measured 11 times, which ranged from $15,220m^3/d$ to $36,278m^3/d$. The discharge rates, measured by the automatic level recorder, for two-year period, were $20,000{\sim}38,000m^3/d$. The variation of discharge rates did not coincide with rainfall event, but showed daily increases of $3,000{\sim}5,000m^3/d$. The annual discharge rate excluding the evapotranspiration and the surrounding stream discharge corresponded to 70.6% of the annual precipitation of the recharge area. Therefore, meteorological observations at the Nari basin, rather than the Ulleung-do meteorological station, are more appropriate to properly interpret the discharge characteristics of the Chusam Spring and the recharge rate of the basin.
Groundwater recharge rate was estimated by applying the groundwater level fluctuation method utilizing Theis (1937) approach with specific yield estimation technique of Shevenell (1996) and the temperature method using observed data from National Groundwater Observation Stations. Results based on analysis of water level observation data of 10 alluvium wells reveal that the recharge rates for 5 wells of Kum river area range 3.7~25.0% and those for 5 wells of Nakdong river area range 3.6~21.7%. Results obtained from the temperature method based on water temperature data indicated that the upward flow resulted from evapotranspiration is dominant for 4 wells of the Kum river area and 5 wells of the Nakdong river area. The other wells showed the downward flow which is related to groundwater recharge in these areas.
지하수 과도 개발에 따라 연안 대수층에 발생하는 해수침투를 효과적으로 방지하기 위한 대책으로서 인공 하수처리수의 대수층 함양수로의 가능성을 평가하고자 sand box를 이용한 연구를 수행하였다. 또한 인공 하수처리수의 함양에 의한 해수침투 경계면의 이동 억제 및 회복능을 조사하였다. 이를 위하여, 인공 대수층 내에서 양수, 저장, 인공 하수 처리수 주입의 변화에 따른 해수/담수 경계면의 수리학적 거동 특성을 평가하였다. 주어진 실험 조건에 따른 해수/담수 경계면의 변화는 Surfer 8(Golden Software, USA)에 의하여 도시화 되었다. 해수와 담수의 경계면은 양수량의 변화에 의하여 민감하게 영향을 받았으며 양수량을 감소시키더라도 경계면의 담수대 이동 속도는 더욱 증가하였다. 그러나 함양량이 감소할 경우 오히려 경계면이 담수대로 이동하는 속도는 감소하였다. 염수의 침투는 함양과 양수가 동시에 이루어질 때보다 양수를 하지 않으면서 함양이 이루어진 경우 더욱 저지되었으며 염수의 염도는 인공 함양수에 의해 희석되어 저하되었다. 결론적으로 인공함양을 효과적으로 이용할 경우 지하 대수층의 담수 자원을 안정하게 이용하는 동시에 해수침투를 수리학적으로 방지할 수 있음을 확인하였다.
Groundwater recharge is defined in an addition of water to groundwater reservoir. Recently, many people have been moving to the Edwards aquifer and urban and agricultural industry have been expending. Hydrologists and water planning managers concern about insufficient groundwater amounts and irrigation water price variability. In this paper, I focus on estimates of local recharge volumes and quantify preferential flow through GIS technique. Chloride Mass Balance (CMB) and hydrochemical components have been widely applied to recharge rate and evaluate flow paths. The CMB method is based on relationship between wet-dry chloride deposition data and Rainfall data. These data are manipulated using ArcGIS. Especially, hydrochemical concentration distribution is good index for groundwater residence times or flow paths such as $[Mg^{2+}]/[Ca^{2+}],[Cl]$ and log$([Ca^{2+}]+[Mg^{2+}])/[Na^+]$. Well information such as hydrological-hydrochemical data are imported into ArcGIS and manipulated by interpolation techniques. For each potentiometric surface and water quality, point data are converted to spatial data through each Kriging and Inverse Distance Weighted (IDW) techniques.
This study was conducted to examine an artificial recharge system, which was considered to be an alternative for securing additional groundwater resources in a high-density greenhouse region. An injection well with a depth of 14.0 m was placed in an alluvial plain of the zone. Eight monitoring wells were placed in a shape of dual circles around the injection well. Aquifer tests showed that the aquifer was comprised with high-permeable layer with hydraulic conductivities of 1.5×10-3~2.4×10-2 cm/sec and storage coefficients of 0.07~0.10. A step injection test resulted in a specific groundwater-level rising (Sr/Q) values of 0.013~0.018 day/㎡ with 64~92% injection efficiencies. Results of the constant-rate injection test with an optimal injection rate of 100 ㎥/day demonstrated an enormous storage capacity of the alluvial aquifer during ten experimental days. To design an optimal recharge system for an artificial recharge, the high-permeable layer should be isolated by dual packers and suitable pressure should be applied to the injection well in order to store water. An anisotropy ratio of the alluvial aquifer was evaluated to be approximately 1.25 : 1 with an anisotropy angle of 71 degrees, indicating intervals among injection wells are almost the same.
우리나라에서 대표적으로 사용되어 온 지하수 함양량 산정방법은 지하수 감수곡선에 의한 기저유출분리법, 유역내의 집중형 개념모형에 의한 물수지 분석, 그리고 지하수위 변동곡선법으로 대별된다. 지하수 함양량은 기후조건, 토지이용 그리고 수문지질학적 불균질성에 따르는 시공간적인 변동성을 나타내므로 전술한 방법들은 이같은 특성을 다루기에는 많은 제약을 가진다. 이 같은 단점을 극복하기 위해 본 연구에서는 통합 지표수-지하수 모형인 SWAT-MODFLOW로부터 얻어진 물수지 성분을 기초로 한 새로운 함양량 추정방법을 제시하고자 한다. 하천변에 위치한 지하수위는 하천흐름과 유사한 동적변화를 나타내는 반면 보다 상류부에 위치한 지하수위는 강수에 대하여 일정한 지체현상을 나타낸다. 이와 같은 지하수위 변동의 특징은 함양의 물리적 특성과 관련되므로 이 같은 현상을 설명하기 위해서는 토양층을 통과한 물이 대수층 함양에 도달하는데 걸리는 시간적 지체를 설명하는 것이 필요하다. SWAT 모형에서는 주어진 날에 대해 물이 토양층을 통과하여 대수층으로 함양되는 과정을 설명하기 위해 지수형태의 감쇠가중함수를 가진 단일 저수지 저류 모듈을 사용한다. 그런데 이 모듈은 지체시간이 긴 경우나 추정된 함양의 시계열이 지하수위 시계열과 잘 맞지 않는 제한 사항을 가지므로, 본 연구에서는 비포화대를 통과하는 시간 지체를 보다 현실적으로 반영할 수 있는 다단 저수지 저류 추적 모듈을 개발하여 SWAT모형에 탑재하였으며, 이 모듈내의 시간지체와 관련된 매개변수는 관측지하수위와 모의 함양량의 상관관계를 검토함으로써 최적화가 이루어지도록 하였다. 본 연구방법의 최종 단계는 모의 지하수위와 관측 지하수위, 그리고 관측 유역유출량과 모의 유출량을 검증함으로써 종결된다. 새롭게 제안된 방법을 우리나라 미호천 유역에 적용하여 지하수 함양량의 시공간적 분포를 추정하였는데 제시된 방법이 유역 모형의 효율성과 지하수위 변동법의 정확성이라는 장점을 모두 가진 방법이어서 추정된 일 함양량은 수리지질학적 불균질성, 기후조건, 토지이용과 토양층과 대수층의 거동까지 반영한 매우 개선된 값으로 판단된다.
우리나라의 지하수 개발가능량은 10년 빈도에 해당하는 갈수시의 강수량에 함양율을 곱한 값으로 정해져 왔다. 하지만 실무에서는 강수량의 빈도 해석을 생략하고 최근 10년 중 최소 강수량에 평균 함양율을 곱한 값을 개발가능량으로 사용하고 있다. 따라서 실제 10년 빈도의 갈수시 강수량이 적용되기 보다는 기간 선택에 따라 적용하는 강수량이 정해지는 모순이 발생한다. 이에 본 연구에서는 이동 10년 최소강수량 평균과 강수량의 규모를 고려한 함양량을 이용하여 개발가능량을 산정하는 방법을 제안하였다. 이 방법을 의왕 과천 성남지역에 적용하여 개발가능량을 산정하고 보편적으로 이용되고 있는 기존 방법에 의한 결과와 비교 검토하였다. 그 결과 극심한 가뭄해를 포함한 기간에서 10년 최소강수량을 선택할 경우 개발가능량이 과소하게 산정되는 문제를 이동 평균 최저 강수량을 사용함으로써 극복할 수 있는 것으로 확인되었다.
지구 온난화에 따른 기후 변화, 강수량, 강우 강도, 빈도 그리고 강우 유형의 변화는 지하수 함양과 지하수위 변동에 큰 영향을 미친다. 전 세계적인 총 저수량 변화를 파악하는데, GRACE의 월 중력값 이용되어지고 있다. 그러나 지하수위의 공간적인 분포를 표현하기가 쉽지 않으므로, GRACE자료와 지하수위 자료를 정량적으로 연관시키기는 쉽지 않다. 본 연구에서는 세 가지 국지적인 보간법(크리깅, 역 거리 가중값 및 자연 인접)을 이용하여 2002년부터 2016년 까지 국내 지하수 함양 변화량의 공간적인 분포를 추정하였다. 그리고 추정된 월평균 지하수 함양 변화량과 GRACE의 월별 지하수 저장량 변화값을 비교하였다. GRACE자료와 실측 지하수자료의 함양량 변동값은 미약하지만 시간이 경과할수록 감소추세를 보이고 있으며, 연구기간 동안에 지하수 함양 변화량의 평균값은 -0.01 cm/month, 중앙값은 -0.02 cm/month로 산정되었다.
The green house on the waterfront is air-conditioned by a water-source heat pump system with riverbank filtration water. In order to supply riverbank filtration water in alluvium aquifer, the riverbank filtration facility for water intake and recharge, two pumping wells and one recharge well, has been constructed. The research site in Jinju, Korea was chosen as a good site for riverbank filtration water supply by the surface geological survey, electrical resistivity soundings, and borehole surveys. In the results of two boreholes drilling at the site, it was revealed that the groundwater table is about 3 m under the ground, and that the sandy gravel aquifer layer in the thickness of 6.5 m and 3.5 m occurs at 5 m and 7 m in depth below the ground level respectively. To prevent the recharge water from affecting the pumped water which might be used as heat source or sink, the distance between pumping and recharge wells is designed at least 70 m with a quarter of recharged flow rate. It is predicted that the transfer term, the recharge water affects the pumping well, is over 6 months of heating season. Hydrogeological simulation and underground water temperature measurement have been carried out for the pumping and recharge well positions in order to confirm the capability of sustainable green house heating and cooling.
Recently, rapid industrialization, urbanization and higher living standards accelerate to increase groundwater consumption resulting in continuously dropping groundwater elevations. To maintain enough groundwater volume without dropping groundwater elevations, the proper groundwater rechatge is necessary. The groundwater rechatge can be classified into two categories which are natural rechatge and artiticial rechatge. Even though the natural rechatge through by dired infiltration from the rainfall is desirable, the artificial groundwater rechatge is necessaty when the increment of groundwater consumption exceeds natural recharge rate. Well method and scattering method are utilized as artificial rechatging method, a severe disadvantage, which is the reduction of the void of soil surface, is indicated in the well method. Recently, the underground piping method, which is a scattering method, is receiving increasing attention as a proper recharging method. The method is indirectly to supply water to the underground using an underground piping system. Therefore, the void of soil surface is not severely reduced and better infiltration rate can be achieved. In this paper, the artificial groundwater rechatge using underground piping method is investigated through experiments and numerical analysis. The influence of the groundwater by underground piping method is evaluated through comparing recharging heights. Good agreements between experiments and numerical analysis are obtained and the artificial groundwater recharge by underground piping method is well tested and verified.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.