• Title/Summary/Keyword: Receptors, Chemokine

Search Result 40, Processing Time 0.026 seconds

Toll-like Receptor3-mediated Induction of Chemokines in Salivary Epithelial Cells

  • Li, Jingchao;Jeong, Mi-Young;Bae, Ji-Hyun;Shin, Yong-Hwan;Jin, Meihong;Hang, Sung-Min;Lee, Jeong-Chai;Lee, Sung-Joong;Park, Kyung-Pyo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.4
    • /
    • pp.235-240
    • /
    • 2010
  • Toll-like receptors (TLRs) functionally expressed in salivary epithelial cells, but their roles remain elusive. Among TLRs family, TLR3 is activated by dsRNA, a byproduct of viral infection. The aim of this study was to investigate the role of TLR3 in the inflammatory immune responses using HSG cells. Reverse transcriptase-polymerase chain reaction (RT-PCR), real-time PCR and ELISA were performed to identify expression of TLRs and TLR3-mediated chemokine inductions. The chemotaxis assay of activated T lymphocytes was also performed. Treatment of HSG cells with polyinosinic: polycytidylic acid (poly(I:C)) significantly increased interferon-$\gamma$-inducible protein 10 (IP-10), interferoninducible T-cell $\alpha$ chemoattractant (I-TAC), and regulated on activation, normal T-cells expressed and secreted (RANTES) gene expressions in a concentration-dependent manner. Anti-TLR3 antibody blocked the increases of IP-10 and I-TAC genes. Poly(I:C)-induced increases of IP-10 and I-TAC were also confirmed at protein levels from cell lysates, but their release into extracellular medium was detected only in IP-10. We found that the culture media from HSG cells stimulated with poly(I:C) significantly increases T lymphocyte migration. Our results suggest that TLR3 plays an important role in chemokine induction, particularly IP-10, in salivary epithelial cells.

Expression of Chemokines and Chemokine Receptors in Brain Tumor Tissue Derived Cells

  • Razmkhah, Mahboobeh;Arabpour, Fahimeh;Taghipour, Mousa;Mehrafshan, Ali;Chenari, Nooshafarin;Ghaderi, Abbas
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.17
    • /
    • pp.7201-7205
    • /
    • 2014
  • Chemokine and chemokine receptor expression by tumor cells contributes to tumor growth and angiogenesis and thus these factors may be considered as tumor markers. Here we aimed to characterize cells directly extracted from glioma, meningioma, and secondary brain tumors as well as non-tumoral cells in vitro. Cells were isolated from brain tissues using 0.2% collagenase and characterized by flow cytometry. Expression of SDF-1, CXCR4, CXCR7, RANTES, CCR5, MCP-1 and IP-10 was defined using flow cytometry and qRT-PCR methods. Brain tissue isolated cells were observed as spindle-shaped cell populations. No significant differences were observed for expression of SDF-1, CXCR4, CXCR7, RANTES, CCR5, and IP-10 transcripts. However, the expression of CXCR4 was approximately 13-fold and 110-fold higher than its counterpart, CXCR7, in meningioma and glioma cells, respectively. CXCR7 was not detectable in secondary tumors but CXCR4 was expressed. In non tumoral cells, CXCR7 had 1.3-fold higher mRNA expression than CXCR4. Flow cytometry analyses of RANTES, MCP-1, IP-10, CCR5 and CXCR4 expression showed no significant difference between low and high grade gliomas. Differential expression of CXCR4 and CXCR7 in brain tumors derived cells compared to non-tumoral samples may have crucial impacts on therapeutic interventions targeting the SDF-1/CXCR4/CXCR7 axis.

The House Dust Mite Allergen, Dermatophagoides pteronyssinus Suppresses the Chemotactic Activity of Human Monocytes

  • Lee, Ji-Sook;Yang, Eun Ju;Kim, In Sik
    • Biomedical Science Letters
    • /
    • v.18 no.4
    • /
    • pp.435-437
    • /
    • 2012
  • House dust mite (HDM) is important in the pathogenesis of allergic diseases including asthma and atopic dermatitis. Dermatophagoides pteronissinus (Dp) is one of major HDM allergens. In this study, we investigated that Dp extract (DpE) affects on the chemotactic activity of monocytes isolated from the peripheral blood. DpE inhibited the migration of human monocytes in response to CC chemokines such as MIP-$1{\alpha}$, RANTES, HCC-4, MCP-1, and TARC. DpE did not alter the expression of CC chemokine receptors (CCRs) such as CCR1, CCR2, CCR3, CCR4, and CCR5. These results indicate that DpE blocks the chemotaxis of human monocytes and its mechanism is not involved in alteration of CCR expression. Better understanding of the effect of DpE on monocytes will enable elucidation of the role of Dp in the development of allergic diseases.

Immuno-Enhancing Effects through Macrophages of Polysaccharides Isolated from Citrus Peels (진피로부터 분리한 다당의 대식세포를 통한 면역증진 효과)

  • Lee, Kyung-Ae;Park, Hye-Ryung
    • The Korean Journal of Food And Nutrition
    • /
    • v.34 no.5
    • /
    • pp.441-448
    • /
    • 2021
  • This study was designed to investigate the intracellular signaling pathways and immunoenhancing effect of macrophage activation by crude polysaccharides (CPP) extracted from citrus peels. CPP did not affect the cytotoxicity of RAW264.7 cells, but showed dose-dependent effects on cell viability. Also, CPP showed high production of chemokine (nitric oxide (NO)) and cytokines (interleukin (IL)-6 and tumor necrosis factor (TNF)-α). CPP increased IL-6, TNF-α, and inducible nitric oxide synthase (iNOS) mRNA expression dose-dependently. CPP also strongly induced the phosphorylation of the ERK, p38, and IκBα pathways in RAW 264.7 cells. In anti-pattern recognition receptors (PRRs) experiments, the effect of CPP on NO production was strongly suppressed by neutralizing toll-like receptor (TLR)2, TLR4, and Dectin1 antibodies, whereas IL-6 and TNF-α production by CPP was mainly suppressed by mannose receptor (MR). Therefore, these results suggest that CPP treatment-induced NO production was regulated by the ERK, p38, and NF-κB pathways through TLR2, TLR4, and Dectin1 receptors, whereas IL-6 and TNF-α production was primarily regulated by the ERK, p38, and NF-κB pathways through MR receptors.

The role of botulinum toxin type A related axon transport in neuropathic pain induced by chronic constriction injury

  • Bu, Huilian;Jiao, Pengfei;Fan, Xiaochong;Gao, Yan;Zhang, Lirong;Guo, Haiming
    • The Korean Journal of Pain
    • /
    • v.35 no.4
    • /
    • pp.391-402
    • /
    • 2022
  • Background: The mechanism of peripheral axon transport in neuropathic pain is still unclear. Chemokine ligand 13 (CXCL13) and its receptor (C-X-C chemokine receptor type 5, CXCR5) as well as GABA transporter 1 (GAT-1) play an important role in the development of pain. The aim of this study was to explore the axonal transport of CXCL13/CXCR5 and GAT-1 with the aid of the analgesic effect of botulinum toxin type A (BTX-A) in rats. Methods: Chronic constriction injury (CCI) rat models were established. BTX-A was administered to rats through subcutaneous injection in the hind paw. The pain behaviors in CCI rats were measured by paw withdrawal threshold and paw withdrawal latencies. The levels of CXCL13/CXCR5 and GAT-1 were measured by western blots. Results: The subcutaneous injection of BTX-A relieved the mechanical allodynia and heat hyperalgesia induced by CCI surgery and reversed the overexpression of CXCL13/CXCR5 and GAT-1 in the spinal cord, dorsal root ganglia (DRG), sciatic nerve, and plantar skin in CCI rats. After 10 mmol/L colchicine blocked the axon transport of sciatic nerve, the inhibitory effect of BTX-A disappeared, and the levels of CXCL13/CXCR5 and GAT-1 in the spinal cord and DRG were reduced in CCI rats. Conclusions: BTX-A regulated the levels of CXCL13/CXCR5 and GAT-1 in the spine and DRG through axonal transport. Chemokines (such as CXCL13) may be transported from the injury site to the spine or DRG through axonal transport. Axon molecular transport may be a target to enhance pain management in neuropathic pain.

Regulation of toll-like receptors expression in muscle cells by exercise-induced stress

  • Park, Jeong-Woong;Kim, Kyung-Hwan;Choi, Joong-Kook;Park, Tae Sub;Song, Ki-Duk;Cho, Byung-Wook
    • Animal Bioscience
    • /
    • v.34 no.10
    • /
    • pp.1590-1599
    • /
    • 2021
  • Objective: This study investigates the expression patterns of toll-like receptors (TLRs) and intracellular mediators in horse muscle cells after exercise, and the relationship between TLRS expression in stressed horse muscle cells and immune cell migration toward them. Methods: The expression patterns of the TLRs (TLR2, TLR4, and TLR8) and downstream signaling pathway-related genes (myeloid differentiation primary response 88 [MYD88]; activating transcription factor 3 [ATF3]) are examined in horse tissues, and horse peripheral blood mononuclear cells (PBMCs), polymorphonuclear cells (PMNs) and muscles in response to exercise, using the quantitative reverse transcription-polymerase chain reaction (qPCR). Expressions of chemokine receptor genes, i.e., C-X-C motif chemokine receptor 2 (CXCR2) and C-C motif chemokine receptor 5 (CCR5), are studied in PBMCs and PMNs. A horse muscle cell line is developed by transfecting SV-T antigen into fetal muscle cells, followed by examination of muscle-specific genes. Horse muscle cells are treated with stressors, i.e., cortisol, hydrogen peroxide (H2O2), and heat, to mimic stress conditions in vitro, and the expression of TLR4 and TLR8 are examined in stressed muscle cells, in addition to migration activity of PBMCs toward stressed muscle cells. Results: The qPCR revealed that TLR4 message was expressed in cerebrum, cerebellum, thymus, lung, liver, kidney, and muscle, whereas TLR8 expressed in thymus, lung, and kidney, while TLR2 expressed in thymus, lung, and kidney. Expressions of TLRs, i.e., TLR4 and TLR8, and mediators, i.e., MYD88 and ATF3, were upregulated in muscle, PBMCs and PMNs in response to exercise. Expressions of CXCR2 and CCR5 were also upregulated in PBMCs and PMNs after exercise. In the muscle cell line, TLR4 and TLR8 expressions were upregulated when cells were treated with stressors such as cortisol, H2O2, and heat. Migration of PBMCs toward stressed muscle cells was increased by exercise and oxidative stresses, and combinations of these. Treatment with methylsulfonylmethane (MSM), an antioxidant on stressed muscle cells, reduced migration of PBMCs toward stressed muscle cells. Conclusion: In this study, we have successfully cultured horse skeletal muscle cells, isolated horse PBMCs, and established an in vitro system for studying stress-related gene expressions and function. Expression of TLR4, TLR8, CXCR2, and CCR5 in horse muscle cells was higher in response to stressors such as cortisol, H2O2, and heat, or combinations of these. In addition, migration of PBMCs toward muscle cells was increased when muscle cells were under stress, but inhibition of reactive oxygen species by MSM modulated migratory activity of PBMCs to stressed muscle cells. Further study is necessary to investigate the biological function(s) of the TLR gene family in horse muscle cells.

Expression of Toll-like Receptors, Pro-, and Anti-inflammatory Cytokines in Relation to Gut Microbiota in Irritable Bowel Syndrome: The Evidence for Its Micro-organic Basis

  • Shukla, Ratnakar;Ghoshal, Ujjala;Ranjan, Prabhat;Ghoshal, Uday C
    • Journal of Neurogastroenterology and Motility
    • /
    • v.24 no.4
    • /
    • pp.628-642
    • /
    • 2018
  • Background/Aims A Subset of patients with irritable bowel syndrome (IBS) may have mild inflammation due to immune activation. Toll-like receptors (TLRs) and cytokines may cause intestinal inflammation. We studied their expression in relation to gut microbiota. Methods Expression of TLRs and cytokines was assessed in 47 IBS patients (Rome III) and 25 controls using quantitative real-time polymerase chain reaction. Immunohistochemistry was further performed to confirm the expression of TLR-4 and TLR-5. Results Of 47 patients with IBS, 20 had constipation (IBS-C), 20 diarrhea (IBS-D), and 7 unclassified (IBS-U). The mRNA levels of TLR-4 and TLR-5 were up-regulated in IBS patients than controls (P = 0.013 and P < 0.001, respectively). Expression of TLR-4 and TLR-5 at protein level was 4.2-folds and 6.6-folds higher in IBS-D than controls. The mRNA levels of IL-6 (P = 0.003), C-X-C motif chemokine ligand 11 (CXCL-11) (P < 0.001) and C-X-C motif chemokine receptor 3 (CXCR-3) (P < 0.001) were higher among IBS patients than controls. Expression of IL-6 (P = 0.002), CXCL-11 (P < 0.001), and CXCR-3 (P < 0.001) were up-regulated and IL-10 (P = 0.012) was down-regulated in IBS-D patients than controls. Positive correlation was seen between TLR-4 and IL-6 (P = 0.043), CXCR-3, and CXCL-11 (P = 0.047), and IL-6 and CXCR-3 (P = 0.003). Stool frequency per week showed positive correlation with mRNA levels of TLR-4 (P = 0.016) and CXCR-3 (P = 0.005), but inversely correlated with IL-10 (P = 0.002). Copy number of Lactobacillus (P = 0.045) and Bifidobacterium (P = 0.011) showed correlation with IL-10 in IBS-C, while Gram-positive (P = 0.031) and Gram-negative bacteria (P = 0.010) showed correlation with CXCL-11 in IBS-D patients. Conclusions Altered immune activation in response to dysbiotic microbiota may promote intestinal inflammation in a subset of patients with IBS.

Cellular Signaling Molecules Associated with Peptidoglycan-Induced CCL3 Up-Regulation

  • Kim, Kang-Seung;Rhim, Byung-Yong;Eo, Seong-Kug;Kim, Koan-Hoi
    • Biomolecules & Therapeutics
    • /
    • v.19 no.3
    • /
    • pp.302-307
    • /
    • 2011
  • Peptidoglycan (PGN) is detected in inflammatory cell-rich regions of human atheromatous plaques. The present study investigated the effects of PGN on CC chemokine ligand 3 (CCL3) expression, which is elevated in the atherosclerotic arteries, and determined cellular factors involved in PGN-mediated CCL3 up-regulation in mononuclear cells, with the goal of understanding the molecular mechanisms of inflammatory responses to bacterial pathogen-associated molecular patterns in diseased arteries. Exposure of human monocytic leukemia THP-1 cells to PGN resulted in enhanced secretion of CCL3 and profound induction of the CCL3 gene transcript. Both events were abrogated by oxidized 1-palmitoyl-2-arachidonosyl-sn-phosphatidylcholine, an inhibitor of Toll-like receptors 2/4. Pharmacological inhibitors such as U0126, SP6001250, Akt inhibitor IV, rapamycin, RO318220, diphenyleneiodonium chloride, and N-acetylcysteine also significantly attenuated PGN-mediated CCL3 up-regulation. However, polymyxin B, LY294002, and SB202190 did not influence CCL3 expression. We propose that PGN contributes to enhanced CCL3 expression in atherosclerotic plaques and that Toll-like receptors (TLR2), Akt, mTOR, mitogen-activated protein kinase, and reactive oxygen species are involved in that process.

Glial Mechanisms of Neuropathic Pain and Emerging Interventions

  • Jo, Daehyun;Chapman, C. Richard;Light, Alan R.
    • The Korean Journal of Pain
    • /
    • v.22 no.1
    • /
    • pp.1-15
    • /
    • 2009
  • Neuropathic pain is often refractory to intervention because of the complex etiology and an incomplete understanding of the mechanisms behind this type of pain. Glial cells, specifically microglia and astrocytes, are powerful modulators of pain and new targets of drug development for neuropathic pain. Glial activation could be the driving force behind chronic pain, maintaining the noxious signal transmission even after the original injury has healed. Glia express chemokine, purinergic, toll-like, glutaminergic and other receptors that enable them to respond to neural signals, and they can modulate neuronal synaptic function and neuronal excitability. Nerve injury upregulates multiple receptors in spinal microglia and astrocytes. Microglia influence neuronal communication by producing inflammatory products at the synapse, as do astrocytes because they completely encapsulate synapses and are in close contact with neuronal somas through gap junctions. Glia are the main source of inflammatory mediators in the central nervous system. New therapeutic strategies for neuropathic pain are emerging such as targeting the glial cells, novel pharmacologic approaches and gene therapy. Drugs targeting microglia and astrocytes, cytokine production, and neural structures including dorsal root ganglion are now under study, as is gene therapy. Isoform-specific inhibition will minimize the side effects produced by blocking all glia with a general inhibitor. Enhancing the anti-inflammatory cytokines could prove more beneficial than administering proinflammatory cytokine antagonists that block glial activation systemically. Research on therapeutic gene transfer to the central nervous system is underway, although obstacles prevent immediate clinical application.

IQGAP1, a signaling scaffold protein, as a molecular target of a small molecule inhibitor to interfere with T cell receptor-mediated integrin activation

  • Li, Lin-Ying;Nguyen, Thi Minh Nguyet;Woo, Eui Jeon;Park, Jongtae;Hwang, Inkyu
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.2
    • /
    • pp.361-373
    • /
    • 2020
  • Integrins such as lymphocyte function-associated antigen -1 (LFA-1) have an essential role in T cell immunity. Integrin activation, namely, the transition from the inactive conformation to the active one, takes place when an intracellular signal is generated by specific receptors such as T cell receptors (TCRs) and chemokine receptors in T cells. In an effort to explore the molecular mechanisms underlying the TCR-mediated LFA-1 activation, we had previously established a high-throughput cell-based assay and screened a chemical library deposited in the National Institute of Health in the United States. As a result, several hits had been isolated including HIKS-1 (Benzo[b]thiophene-3-carboxylic acid, 2-[3-[(2-carboxyphenyl) thio]-2,5-dioxo-1-pyrrolinyl]-4,5,6,7-tetrahydro-,3-ethyl ester). In an attempt to reveal the mode of action of HIKS-1, in this study, we did drug affinity responsive target stability (DARTS) assay finding that HIKS-1 interacted with the IQ motif containing GTPase activating protein 1 (IQGAP1), a 189 kDa multidomain scaffold protein critically involved in various signaling mechanisms. Furthermore, the cellular thermal shift assay (CETSA) provided compelling evidence that HIKS-1 also interacted with IQGAP1 in vivo. Taken together, it can be concluded that HIKS-1 interferes with the TCR-mediated LFA-1 activation by interacting with IQGAP1 and thereby disrupting the signaling pathway for LFA-1 activation.