References
- Dworkin RH, Portenoy RK: Pain and its persistence in herpes zoster. Pain 1996;67: 241-51 https://doi.org/10.1016/0304-3959(96)03122-3
- McCleane G: Pharmacological management of neuropathic pain. CNS Drugs 2003; 17: 1031-43 https://doi.org/10.2165/00023210-200317140-00003
- Tsuda M, Inoue K, Salter MW: Neuropathic pain and spinal microglia: a big problem from molecules in 'small' glia. Trends Neurosci 2005; 28: 101-7 https://doi.org/10.1016/j.tins.2004.12.002
- Watkins LR, Maier SF: Glia: a novel drug discovery target for clinical pain. Nat Rev Drug Discov 2003; 2: 973-85 https://doi.org/10.1038/nrd1251
- Sommer C: Painful neuropathies. Curr Opin Neurol 2003;16: 623-8 https://doi.org/10.1097/00019052-200310000-00009
- Campbell JN, Meyer RA: Mechanisms of neuropathic pain. Neuron 2006; 52: 77-92 https://doi.org/10.1016/j.neuron.2006.09.021
- Hucho T, Levine JD: Signaling pathways in sensitization:toward a nociceptor cell biology. Neuron 2007; 55: 365-76 https://doi.org/10.1016/j.neuron.2007.07.008
- Woolf CJ, Mannion RJ: Neuropathic pain: aetiology, symptoms, mechanisms, and management. Lancet 1999; 353:1959-64 https://doi.org/10.1016/S0140-6736(99)01307-0
- Jolivalt CG, Lee CA, Ramos KM, Calcutt NA: Allodynia and hyperalgesia in diabetic rats are mediated by GABA and depletion of spinal potassium-chloride co-transporters. Pain 2008; 140: 48-57 https://doi.org/10.1016/j.pain.2008.07.005
- Khasar SG, McCarter G, Levine JD: Epinephrine produces a beta-adrenergic receptor-mediated mechanical hyperalgesia and in vitro sensitization of rat nociceptors. J Neurophysiol 1999; 81: 1104-12 https://doi.org/10.1152/jn.1999.81.3.1104
- Wieseler-Frank J, Maier SF, Watkins LR: Glial activation and pathological pain. Neurochem Int 2004; 45: 389-95 https://doi.org/10.1016/j.neuint.2003.09.009
- Spataro LE, Sloane EM, Milligan ED, Wieseler-Frank J, Schoeniger D, Jekich BM, et al: Spinal gap junctions:potential involvement in pain facilitation. J Pain 2004; 5:392-405 https://doi.org/10.1016/j.jpain.2004.06.006
- Gehrmann J, Matsumoto Y, Kreutzberg GW: Microglia:intrinsic immuneffector cell of the brain. Brain Res Brain Res Rev 1995; 20: 269-87 https://doi.org/10.1016/0165-0173(94)00015-H
- Tsuda M, Shigemoto-Mogami Y, Koizumi S, Mizokoshi A, Kohsaka S, Salter MW, et al: P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury. Nature 2003; 424: 778-83 https://doi.org/10.1038/nature01786
- Verge GM, Milligan ED, Maier SF, Watkins LR, Naeve GS, Foster AC: Fractalkine (CX3CL1) and fractalkine receptor (CX3CR1) distribution in spinal cord and dorsal root ganglia under basal and neuropathic pain conditions. Eur J Neurosci 2004; 20: 1150-60 https://doi.org/10.1111/j.1460-9568.2004.03593.x
- Zhuang ZY, Kawasaki Y, Tan PH, Wen YR, Huang J, Ji RR: Role of the CX3CR1/p38 MAPK pathway in spinal microglia for the development of neuropathic pain following nerve injury-induced cleavage of fractalkine. Brain Behav Immun 2007; 21: 642-51 https://doi.org/10.1016/j.bbi.2006.11.003
- Light AR, Wu Y, Hughen RW, Guthrie PB: Purinergic receptors activating rapid intracellular Ca increases in microglia. Neuron Glia Biol 2006; 2: 125-38 https://doi.org/10.1017/S1740925X05000323
- Tozaki-Saitoh H, Tsuda M, Miyata H, Ueda K, Kohsaka S, Inoue K: P2Y12 receptors in spinal microglia are required for neuropathic pain after peripheral nerve injury. J Neurosci 2008; 28: 4949-56 https://doi.org/10.1523/JNEUROSCI.0323-08.2008
- Abbadie C, Lindia JA, Cumiskey AM, Peterson LB, Mudgett JS, Bayne EK, et al: Impaired neuropathic pain responses in mice lacking the chemokine receptor CCR2. Proc Natl Acad Sci USA 2003; 100: 7947-52 https://doi.org/10.1073/pnas.1331358100
- Tanga FY, Nutile-McMenemy N, DeLeo JA: The CNS role of Toll-like receptor 4 in innate neuroimmunity and painful neuropathy. Proc Natl Acad Sci USA 2005; 102: 5856-61 https://doi.org/10.1073/pnas.0501634102
- Kumar S, Boehm J, Lee JC: p38 MAP kinases: key signalling molecules as therapeutic targets for inflammatory diseases. Nat Rev Drug Discov 2003; 2: 717-26 https://doi.org/10.1038/nrd1177
- Si J, Fu X, Behar J, Wands J, Beer DG, Souza RF, et al:NADPH oxidase NOX5-S mediates acid-induced cyclooxygenase-2 expression via activation of NF-kappaB in Barrett's esophageal adenocarcinoma cells. J Biol Chem 2007;282: 16244-55 https://doi.org/10.1074/jbc.M700297200
- Zhang FY, Wan Y, Zhang ZK, Light AR, Fu KY: Peripheral formalin injection induces long-lasting increases in cyclooxygenase 1 expression by microglia in the spinal cord. J Pain 2007; 8: 110-7 https://doi.org/10.1016/j.jpain.2006.06.006
- Jana M, Dasgupta S, Saha RN, Liu X, Pahan K: Induction of tumor necrosis factor-alpha (TNF-alpha) by interleukin-12 p40 monomer and homodimer in microglia and macrophages. J Neurochem 2003; 86: 519-28 https://doi.org/10.1046/j.1471-4159.2003.01864.x
- Krakauer T: Molecular therapeutic targets in inflammation:cyclooxygenase and NF-kappaB. Curr Drug Targets Inflamm Allergy 2004; 3: 317-24 https://doi.org/10.2174/1568010043343714
-
Raouf R, Chabot-Dor
$\grave{e}$ AJ, Ase AR, Blais D, S$\grave{e}$ gu$\grave{e}$ la P: Differential regulation of microglial P2X4 and P2X7 ATP receptors following LPS-induced activation. Neuropharmacology 2007; 53: 496-504 https://doi.org/10.1016/j.neuropharm.2007.06.010 - Hanisch UK: Microglia as a source and target of cytokines. Glia 2002; 40: 140-55 https://doi.org/10.1002/glia.10161
- Vitkovic L, Bockaert J, Jacque C: "Inflammatory" cytokines: neuromodulators in normal brain? J Neurochem 2000; 74: 457-71 https://doi.org/10.1046/j.1471-4159.2000.740457.x
- Haynes SE, Hollopeter G, Yang G, Kurpius D, Dailey ME, Gan WB, et al: The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nat Neurosci 2006;9: 1512-9 https://doi.org/10.1038/nn1805
- Zhuang ZY, Gerner P, Woolf CJ, Ji RR: ERK is sequentially activated in neurons, microglia, and astrocytes by spinal nerve ligation and contributes to mechanical allodynia in this neuropathic pain model. Pain 2005; 114: 149-59 https://doi.org/10.1016/j.pain.2004.12.022
- Wei F, Zhuo M: Activation of Erk in the anterior cingulate cortex during the induction and expression of chronic pain. Mol Pain 2008; 4: 28 https://doi.org/10.1186/1744-8069-4-28
- Colburn RW, DeLeo JA, Rickman AJ, Yeager MP, Kwon P, Hickey WF: Dissociation of microglial activation and neuropathic pain behaviors following peripheral nerve injury in the rat. J Neuroimmunol 1997; 79: 163-75 https://doi.org/10.1016/S0165-5728(97)00119-7
- White FA, Sun J, Waters SM, Ma C, Ren D, Ripsch M, et al: Excitatory monocyte chemoattractant protein-1 signaling is up-regulated in sensory neurons after chronic compression of the dorsal root ganglion. Proc Natl Acad Sci USA 2005; 102: 14092-7 https://doi.org/10.1073/pnas.0503496102
- Zhang J, De Koninck Y: Spatial and temporal relationship between monocyte chemoattractant protein-1 expression and spinal glial activation following peripheral nerve injury. J Neurochem 2006; 97: 772-83 https://doi.org/10.1111/j.1471-4159.2006.03746.x
- Rebenko-Moll NM, Liu L, Cardona A, Ransohoff RM:Chemokines, mononuclear cells and the nervous system:heaven (or hell) is in the details. Curr Opin Immunol 2006;18: 683-9 https://doi.org/10.1016/j.coi.2006.09.005
- Dansereau MA, Gosselin RD, Pohl M, Pommier B, Mechighel P, Mauborgne A, et al: Spinal CCL2 pronociceptive action is no longer effective in CCR2 receptor antagonist-treated rats. J Neurochem 2008; 106: 757-69 https://doi.org/10.1111/j.1471-4159.2008.05429.x
- Jung H, Toth PT, White FA, Miller RJ: Monocyte chemoattractant protein-1 functions as a neuromodulator in dorsal root ganglia neurons. J Neurochem 2008; 104: 254-63
- Thacker MA, Clark AK, Bishop T, Grist J, Yip PK, Moon LD, et al: CCL2 is a key mediator of microglia activation in neuropathic pain states. Eur J Pain 2009; 13: 263-72 https://doi.org/10.1016/j.ejpain.2008.04.017
- Miyake K: Innate immune sensing of pathogens and danger signals by cell surface Toll-like receptors. Semin Immunol 2007; 19: 3-10 https://doi.org/10.1016/j.smim.2006.12.002
- Kim D, Kim MA, Cho IH, Kim MS, Lee S, Jo EK, et al:A critical role of toll-like receptor 2 in nerve injury-induced spinal cord glial cell activation and pain hypersensitivity. J Biol Chem 2007; 282: 14975-83 https://doi.org/10.1074/jbc.M607277200
- Gay NJ, Gangloff M: Structure and function of Toll receptors and their ligands. Annu Rev Biochem 2007; 76:141-65 https://doi.org/10.1146/annurev.biochem.76.060305.151318
- Hutchinson MR, Zhang Y, Brown K, Coats BD, Shridhar M, Sholar PW, et al: Non-stereoselective reversal of neuropathic pain by naloxone and naltrexone: involvement of toll-like receptor 4 (TLR4). Eur J Neurosci 2008; 28: 20-9 https://doi.org/10.1111/j.1460-9568.2008.06321.x
- Garrison CJ, Dougherty PM, Kajander KC, Carlton SM:Staining of glial fibrillary acidic protein (GFAP) in lumbar spinal cord increases following a sciatic nerve constriction injury. Brain Res 1991; 565: 1-7 https://doi.org/10.1016/0006-8993(91)91729-K
- Takano T, Tian GF, Peng W, Lou N, Libionka W, Han X, et al: Astrocyte-mediated control of cerebral blood flow. Nat Neurosci 2006; 9: 260-7 https://doi.org/10.1038/nn1623
- Yarowsky P, Boyne AF, Wierwille R, Brookes N: Effect of monensin on deoxyglucose uptake in cultured astrocytes:energy metabolism is coupled to sodium entry. J Neurosci 1986; 6: 859-66
- Rogers SD, Peters CM, Pomonis JD, Hagiwara H, Ghilardi JR, Mantyh PW: Endothelin B receptors are expressed by astrocytes and regulate astrocyte hypertrophy in the normal and injured CNS. Glia 2003; 41: 180-90 https://doi.org/10.1002/glia.10173
- Peters CM, Rogers SD, Pomonis JD, Egnaczyk GF, Keyser CP, Schmidt JA, et al: Endothelin receptor expression in the normal and injured spinal cord: potential involvement in injury-induced ischemia and gliosis. Exp Neurol 2003;180:1-13 https://doi.org/10.1016/S0014-4886(02)00023-7
- Ji RR, Baba H, Brenner GJ, Woolf CJ: Nociceptive-specific activation of ERK in spinal neurons contributes to pain hypersensitivity. Nat Neurosci 1999; 2: 1114-9 https://doi.org/10.1038/16040
- Ji RR, Befort K, Brenner GJ, Woolf CJ: ERK MAP kinase activation in superficial spinal cord neurons induces prodynorphin and NK-1 upregulation and contributes to persistent inflammatory pain hypersensitivity. J Neurosci 2002;22: 478-85
- Zhuang ZY, Wen YR, Zhang DR, Borsello T, Bonny C, Strichartz GR, et al: A peptide c-Jun N- terminal kinase (JNK) inhibitor blocks mechanical allodynia after spinal nerve ligation: respective roles of JNK activation in primary sensory neurons and spinal astrocytes for neuropathic pain development and maintenance. J Neurosci 2006; 26:3551-60 https://doi.org/10.1523/JNEUROSCI.5290-05.2006
- Borsello T, Clarke PG, Hirt L, Vercelli A, Repici M, Schorderet DF, et al: A peptide inhibitor of c-Jun Nterminal kinase protects against excitotoxicity and cerebral ischemia. Nat Med 2003; 9: 1180-6 https://doi.org/10.1038/nm911
- Ferrara N, Ousley F, Gospodarowicz D: Bovine brain astrocytes express basic fibroblast growth factor, a neurotropic and angiogenic mitogen. Brain Res 1988; 462:223-32 https://doi.org/10.1016/0006-8993(88)90550-1
- Eclancher F, Perraud F, Faltin J, Labourdette G, Sensenbrenner M: Reactive astrogliosis after basic fibroblast growth factor (bFGF) injection in injured neonatal rat brain. Glia 1990; 3: 502-9 https://doi.org/10.1002/glia.440030609
- Koshinaga M, Sanon HR, Whittemore SR: Altered acidic and basic fibroblast growth factor expression following spinal cord injury. Exp Neurol 1993; 120: 32-48 https://doi.org/10.1006/exnr.1993.1038
- Lee TT, Green BA, Dietrich WD, Yezierski RP: Neuroprotective effects of basic fibroblast growth factor following spinal cord contusion injury in the rat. J Neurotrauma 1999;16: 347-56 https://doi.org/10.1089/neu.1999.16.347
- Rabchevsky AG, Fugaccia I, Turner AF, Blades DA, Mattson MP, Scheff SW: Basic fibroblast growth factor (bFGF) enhances functional recovery following severe spinal cord injury to the rat. Exp Neurol 2000; 164: 280-91 https://doi.org/10.1006/exnr.2000.7399
- Miyoshi K, Obata K, Kondo T, Okamura H, Noguchi K:Interleukin-18-mediated microglia/astrocyte interaction in the spinal cord enhances neuropathic pain processing after nerve injury. J Neurosci 2008; 28: 12775-87 https://doi.org/10.1523/JNEUROSCI.3512-08.2008
- Meller ST, Dykstra C, Grzybycki D, Murphy S, Gebhart GF: The possible role of glia in nociceptive processing and hyperalgesia in the spinal cord of the rat. Neuropharmacology 1994; 33: 1471-8 https://doi.org/10.1016/0028-3908(94)90051-5
- Raghavendra V, Tanga F, DeLeo JA: Inhibition of microglial activation attenuates the development but not existing hypersensitivity in a rat model of neuropathy. J Pharmacol Exp Ther 2003; 306: 624-30 https://doi.org/10.1124/jpet.103.052407
- Ledeboer A, Sloane EM, Milligan ED, Frank MG, Mahony JH, Maier SF, et al: Minocycline attenuates mechanical allodynia and proinflammatory cytokine expression in rat models of pain facilitation. Pain 2005; 115: 71-83 https://doi.org/10.1016/j.pain.2005.02.009
- Hassel B, Paulsen RE, Johnsen A, Fonnum F: Selective inhibition of glial cell metabolism in vivo by fluorocitrate. Brain Res 1992; 576: 120-4 https://doi.org/10.1016/0006-8993(92)90616-H
- Aumeerally N, Allen G, Sawynok J: Glutamate-evoked release of adenosine and regulation of peripheral nociception. Neuroscience 2004; 127: 1-11 https://doi.org/10.1016/j.neuroscience.2004.04.012
- Zhang SC, Goetz BD, Duncan ID: Suppression of activated microglia promotes survival and function of transplanted oligodendroglial progenitors. Glia 2003; 41: 191-8 https://doi.org/10.1002/glia.10172
- Romero-Sandoval EA, Horvath RJ, DeLeo JA: Neuroimmune interactions and pain: focus on glial-modulating targets. Curr Opin Investig Drugs 2008; 9: 726-34
- Padi SS, Kulkarni SK: Minocycline prevents the development of neuropathic pain, but not acute pain: possible anti-inflammatory and antioxidant mechanisms. Eur J Pharmacol 2008; 601: 79-87 https://doi.org/10.1016/j.ejphar.2008.10.018
- Hutchinson MR, Lewis SS, Coats BD, Skyba DA, Crysdale NY, Berkelhammer DL, et al: Reduction of opioid withdrawal and potentiation of acute opioid analgesia by systemic AV411 (ibudilast). Brain Behav Immun 2009; 23:240-50 https://doi.org/10.1016/j.bbi.2008.09.012
- Tawfik VL, Nutile-McMenemy N, Lacroix-Fralish ML, Deleo JA: Efficacy of propentofylline, a glial modulating agent, on existing mechanical allodynia following peripheral nerve injury. Brain Behav Immun 2007; 21: 238-46 https://doi.org/10.1016/j.bbi.2006.07.001
-
Sch
$\ddot{a}$ fers M, Svensson CI, Sommer C, Sorkin LS: Tumor necrosis factor-alpha induces mechanical allodynia after spinal nerve ligation by activation of p38 MAPK in primary sensory neurons. J Neurosci 2003; 23: 2517-21 - Wen YR, Suter MR, Kawasaki Y, Huang J, Pertin M, Kohno T, et al: Nerve conduction blockade in the sciatic nerve prevents but does not reverse the activation of p38 mitogen-activated protein kinase in spinal microglia in the rat spared nerve injury model. Anesthesiology 2007; 107:312-21 https://doi.org/10.1097/01.anes.0000270759.11086.e7
- Milligan ED, Twining C, Chacur M, Biedenkapp J, O'Connor K, Poole S, et al: Spinal glia and proinflammatory cytokines mediate mirror-image neuropathic pain in rats. J Neurosci 2003; 23: 1026-40
- Margolles-Clark E, Jacques-Silva MC, Ganesan L, Umland O, Kenyon NS, Ricordi C, et al: Suramin inhibits the CD40-CD154 costimulatory interaction: a possible mechanism for immunosuppressive effects. Biochem Pharmacol 2009; 77: 1236-45 https://doi.org/10.1016/j.bcp.2009.01.001
- Ji RR, Suter MR: p38 MAPK, microglial signaling, and neuropathic pain. Mol Pain 2007; 3: 33 https://doi.org/10.1186/1744-8069-3-33
- Bhat NR, Zhang P, Lee JC, Hogan EL: Extracellular signal-regulated kinase and p38 subgroups of mitogenactivated protein kinases regulate inducible nitric oxide synthase and tumor necrosis factor-alpha gene expression in endotoxin-stimulated primary glial cultures. J Neurosci 1998; 18: 1633-41
- Ji RR, Kawasaki Y, Zhuang ZY, Wen YR, Zhang YQ: Protein kinases as potential targets for the treatment of pathological pain. Handb Exp Pharmacol 2007; 177: 359-89 https://doi.org/10.1007/978-3-540-33823-9_13
- Pires MM, Emmert D, Hrycyna CA, Chmielewski J: Inhibition of P-glycoprotein-mediated paclitaxel resistance by reversibly linked quinine homodimers. Mol Pharmacol 2009; 75: 92-100 https://doi.org/10.1124/mol.108.050492
- Bettoni I, Comelli F, Rossini C, Granucci F, Giagnoni G, Peri F, et al: Glial TLR4 receptor as new target to treat neuropathic pain: efficacy of a new receptor antagonist in a model of peripheral nerve injury in mice. Glia 2008; 56:1312-9 https://doi.org/10.1002/glia.20699
- Borsello T, Bonny C: Use of cell-permeable peptides to prevent neuronal degeneration. Trends Mol Med 2004; 10:239-44 https://doi.org/10.1016/j.molmed.2004.03.008
-
Falsig J, P
$\ddot{o}$ rzgen P, Lotharius J, Leist M: Specific modulation of astrocyte inflammation by inhibition of mixed lineage kinases with CEP-1347. J Immunol 2004; 173:2762-70 - Madiai F, Goettl VM, Hussain SR, Clairmont AR, Stephens RL Jr, Hackshaw KV: Anti-fibroblast growth factor-2 antibodies attenuate mechanical allodynia in a rat model of neuropathic pain. J Mol Neurosci 2005; 27: 315-24 https://doi.org/10.1385/JMN:27:3:315
- Manzanares J, Julian M, Carrascosa A: Role of the cannabinoid system in pain control and therapeutic implications for the management of acute and chronic pain episodes. Curr Neuropharmacol 2006; 4: 239-57 https://doi.org/10.2174/157015906778019527
- Ashton JC, Glass M: The cannabinoid CB2 receptor as a target for inflammation-dependent neurodegeneration. Curr Neuropharmacol 2007; 5: 73-80 https://doi.org/10.2174/157015907780866884
- Beltramo M, Bernardini N, Bertorelli R, Campanella M, Nicolussi E, Fredduzzi S, et al: CB2 receptor- mediated antihyperalgesia: possible direct involvement of neural mechanisms. Eur J Neurosci 2006; 23: 1530-8 https://doi.org/10.1111/j.1460-9568.2006.04684.x
- Gunnarsson I, Nordmark B, Hassan Bakri A, Gröndal G, Larsson P, Forslid J, et al: Development of lupus-related side-effects in patients with early RA during sulphasalazine treatment-the role of IL-10 and HLA. Rheumatology (Oxford) 2000; 39: 886-93 https://doi.org/10.1093/rheumatology/39.8.886
- Goss JR, Goins WF, Glorioso JC: Gene therapy applications for the treatment of neuropathic pain. Expert Rev Neurother 2007; 7: 487-506 https://doi.org/10.1586/14737175.7.5.487
- Mata M, Hao S, Fink DJ: Gene therapy directed at the neuroimmune component of chronic pain with particular attention to the role of TNF alpha. Neurosci Lett 2008; 437:209-13 https://doi.org/10.1016/j.neulet.2008.03.049
- Milligan ED, Soderquist RG, Malone SM, Mahoney JH, Hughes TS, Langer SJ, et al: Intrathecal polymer-based interleukin-10 gene delivery for neuropathic pain. Neuron Glia Biol 2006; 2: 293-308 https://doi.org/10.1017/S1740925X07000488
- Tan PH, Janes SE, Handa AI, Friend PJ: More trouble ahead; is gene therapy coming of age? Expert Opin Biol Ther 2008; 8: 561-7 https://doi.org/10.1517/14712598.8.5.561
- Mika J: Modulation of microglia can attenuate neuropathic pain symptoms and enhance morphine effectiveness. Pharmacol Rep 2008; 60: 297-307
Cited by
- Morin Mitigates Chronic Constriction Injury (CCI)-Induced Peripheral Neuropathy by Inhibiting Oxidative Stress Induced PARP Over-Activation and Neuroinflammation vol.41, pp.8, 2016, https://doi.org/10.1007/s11064-016-1914-0
- Antiallodynic Effects of Bee Venom in an Animal Model of Complex Regional Pain Syndrome Type 1 (CRPS-I) vol.9, pp.9, 2017, https://doi.org/10.3390/toxins9090285
- Dissociation between morphine-induced spinal gliosis and analgesic tolerance by ultra-low-dose α2-adrenergic and cannabinoid CB1-receptor antagonists pp.0955-8810, 2018, https://doi.org/10.1097/FBP.0000000000000377
- Lumbar foraminal neuropathy: an update on non-surgical management vol.32, pp.3, 2009, https://doi.org/10.3344/kjp.2019.32.3.147